Tag Archives: FitBit

What We Are Reading

Hello again! Here we are with another list of articles, links, and visualizations for you. Enjoy!

QS15 Reactions
We’ve started to see a few great blog posts and articles describing the experience of attending the QS15 Conference and Expo. For the next few weeks we’ll be highlight a few here.

My Data, Your Data, Our Data by Murray Grigo-McMahon
Notes from the 2015 Quantified Self Conference by Arpit Mathur
Quantified Self 2015 by Phoebe V. Moore
QS15: Measurement with Meaning by Ben Bending


The Future of Food Data: Toward Transparency, Personalized Design, & Re-Thinking the Concept of a ‘Food Label’ by Sam Slover. We highlighted Sam’s work on visualizing his food last year and it nice to see that work is continuing. I’m interested to see where this goes.

An Evening with the Consciousness Hackers by Nellie Bowles. Brain tracking and augmentation is definitely on the rise. Great to see the Consciousness Hacking group get some attention. (We were honored to have Mikey Siegel and Ariel Garten participate at the QS15 Conference and Expo. Look for their talk soon!)

Make people the controllers of their data to help the NHS go digital by Andrew Chitty.

There’s a solution to this too. Make it the default assumption that the patient is the owner or controller of all data relating to them. They can then share this data with whichever parts of the health service they wish.

This might sound slightly outlandish but think about it: we’re increasingly going to see digitized records become the norm, with many of them self-generated by citizens as part of their self-care – which we want to encourage, not only because it engages people with their own care but because it short circuits the technical barriers around information sharing.

What if We Really Set Data Free by Elizabeth Nelson. I had the pleasure of speaking at length with Elizabeth about Quantified Self, data, and data access. Make sure to also check out this great interview with Josh Berson.

The Crying Baby and the Sympathetic Fitbit by Jocelyn Wiener. A great article by a mother with a new baby who learned how sleep tracking can be useful.

My sleep didn’t get any better just because Fitbit started quantifying how crappy it was. But I felt validated, if only by someone with a rechargeable battery for a heart. While I received plenty of clucking sympathy from family and friends, my new device gave me something arguably better: evidence.

Basis_Sleep Is drunk sleep less restful than sober sleep? How much so? Why or why not? by Justin Lawler. Not sure where I saw this, probably in the #quantifiedself stream on Twitter, but this Quora answer is pretty fantastic. Justin takes the time to explain what he found when he ran a test on how alcohol affected his sleep using his Basis watch.

Quantified home birth by Morris Villarroel. A beautiful post by our friend Morris, who describes his tracking experience during the day his son was born.


New-image-web-FCP Food Chain Project by Itamar Gilboa.

The Israeli-Dutch artist kept a diary of everything he ate and drank for the duration of a year. He meticulously kept track of his daily consumption. Some three years later, the results can be seen in a sculpture installation, the Food Chain Project. His installation, a traveling pop-up supermarket consisting of more than 8,000 white plaster sculptural groceries, physically represents Gilboa’s yearly consumption.


2014_running From a Net to a Harpoon: 2014 Annual Review by Michael Anthony. I cannot stress how beautiful this annual review is. Maybe it’s the focus on running that gets to me, but the whole this is worth looking through. You can even go back in time and view Michael’s reports from 20112012, and 2013.

From the Forum
Quantifying Caloric Intake
How to Quantify Myself

This week on QuantifiedSelf.com
2015 QS Visualization Gallery: Part 1
2015 QS Europe Conference: Scholarship Application Now Open

Posted in What We're Reading | Tagged , , , , , | Leave a comment

Comparing Apple Watch and Fitbit One for Step Tracking


When the Apple Watch was announced I started waiting with bated breath to see how it could be useful for Quantified Self and self-tracking purposes. Of course this means staying up late and making sure I had one on order as soon as possible. I put in my order shortly after midnight on launch day for a 42mm Space Gray with the black sport band.

On May 19th my Apple Watch arrived, coincidentally just after we wrapped on our first Bay Area Apple Watch Users Group meeting (which was fantastic and I highly recommend joining). I set it up and started figuring out how it worked as an activity tracker. I have a keen interest in activity tracking, not just as a self-tracker, but also as a graduate student studying how people use activity tracker data to understand and impact their lives. In that vein, I’ve been a consistent Fitbit user for over four years, transitioning from the original Fitbit to the Ultra, and then to my current Fitbit One. I’m a big fan of the Fitbit and use it as my personal “gold standard” for activity tracking. It’s accurate, consistent, and easy to use. Does that hold true for the Apple Watch? Let’s find out.

What did I do?

I wore my Apple Watch every day, from the moment I woke up to when I went to sleep at night. I set up my charging station on my nightstand, which is also where my Fitbit One spends its nights. I wasn’t thinking about this data analysis when I first started wearing the watch, but looking back over the past month I am confident saying that if I was wearing my Fitbit I was also wearing the watch.

This data analysis includes data from May 20th to June 23rd, or 35 days of data collection. My activities varied as a normal function of my work and life, meaning I didn’t purposefully mix things up or engage in activities just for testing purposes. Many days were sedentary, some days had longer walking periods, and in the 35 days I ran seven times at distances between four and nine miles.

How did I do it?

Exporting the data from both the Fitbit and the Apple Watch is not a trivial task, but thanks to a few pieces of software I was able to access and analyze both data sets.

Apple Watch
The Apple Watch stores the data it collects in Apple’s Health app using Healthkit. A quick glance into the Health app indicates that it is storing minute-level step data from the Apple Watch. Apple built in a data export function for the Health app, but it’s in a proprietary XML format that I’m not super familiar with. Thankfully there is QS Access. Our team at QS Labs created simple app that connects to Apple Health and allows you to export your data in a easy to use .csv file.

To export my data I first made sure that the Apple Watch had the highest priority for the data sources that feed the “steps” data for Apple Health. This is important because all newer iPhones (5s, 6, 6+) also natively create step data and store it in the Health app. I then used QS Access to create a data export for steps. I chose the hourly function as it’s the highest level of granularity the QS Access app currently offers for data export.

Fitbit recently introduced a data export feature. While this is a great step forward for them, and for their millions of users, the export feature is a bit limited. You can only export daily aggregate data and only one month of data is exportable at a time. Since I had access to hourly data from the Apple Watch I wanted to match that granularity.

I turned to my good friend, and past colleague, Aaron Coleman. Aaron runs a unique startup called Fitabase, which was built to help researchers, organizations, and individuals get easy access to activity tracker data. I spun up my account at Fitabase, which has been collecting and storing my Fitbit data for the last few years, chose the date range and downloaded my hourly step data.

I wanted to get right to my core question, “How accurate is the Apple Watch compared to the Fitbit One?” so I imported both data files into Google Spreadsheets, did a bit of data formatting, created a pivot table, then made some simple graphs. The full data set is available here if you want explore more complex statistics or visualizations.

What Did I Learn?

When compared to the Fitbit One, the Apple Watch is fairly accurate for step tracking. What do I mean by fairly accurate? Let’s dive into the data.

Daily Steps

When I explored my daily step totals it appeared that the Apple Watch counts more steps than my Fitbit One, but not that many more. Here’s the data you need to know:

  • Fitbit Total Steps: 308,955
  • Apple Watch Total Steps: 317,971
  • >Difference: 9,016 or 2.91% of the total steps (counted by Fitbit)

I created a difference category by subtracting Fitbit steps from Apple Watch steps for each day. This allowed me to see how different the data was day over day. The mean difference indicated that Apple Watch counted 258 steps more per day on average. Important to note that the daily difference was highly variable with a standard deviation of 516 steps. Looking at the scatterplot and histogram below you can see a few clear outliers, but what appears to be an otherwise normal(ish) distribution for the difference in step counts.



Hourly Steps
What about when we look at a higher level of granularity? I also explored the hourly steps data and compared the Fitbit and Apple Watch. On average the Apple Watch counted 11 more steps per hour than the Fitbit One during this period. Again, this was highly variable with a standard deviation of 85 steps, and a range from overcounting by 462 steps to undercounting by 696 steps. I haven’t yet filtered out sleep time (0 steps) so the mean difference per hour in this data set is likely skewed low.



I also looked into one more question that I though was interesting. Is there a significant difference in daily or hourly step data as a function of the total steps? Or, more simply, when I’m more active does the Apple Watch still stay consistent?

It appears that being more active doesn’t have a significant impact on how accurate the Apple Watch is tracking and counting steps. I created scatterplots for this relationship and added a simple linear trendline. In both cases, the trendline indicated that only a small amount of variability in the difference between the devices was accounted for by the total steps taken.



So What?

I’m not ready to give up my Fitbit just yet, but I was happy to see that the Apple Watch is an accurate step tracking device. Of course there are caveats to this data set. It’s somewhat small, a little over a month of data, and I didn’t do any “ground truth” testing where I counted my actual steps. However, I feel more confident now that whether I’m walking around my apartment, my nieghborhood, or going on runs, the Apple Watch will accurately reflect those activities.

What’s Next?

Like most other runners who are using the Apple Watch I’m interested to dive into the heart rate data to test it’s accuracy. I’ve already collected a few runs, but will doing a bit more testing to compare to other common heart rate trackers.

Posted in Lab Notes | Tagged , , , , , | Leave a comment

Fitbit vs. Moves: An Exploration of Phone and Wearable Data

Like many people paying attention to the press around Quantified Self, self-tracking, and wearable technology I was intrigued by the many articles that focused on a newly published research letter in the Journal of the American Medical Association. The letter, Accuracy of Smartphone Applications and Wearable Devices for Tracking Physical Activity Data, authored by Meredith A. Case et al., described a laboratory study that examined a few different smartphone applications and self-tracking devices. Specifically, they tested the accuracy of steps reported by the three different apps: Moves (Galaxy S4 and iPhone 5s),  Withings Health Mate (iPhone 5s), and the Fitbit app (iPhone 5s), three wrist-worn devices: Nike Fuelband, Fitbit Flex, and the Jawbone UP24, and three waist-worn devices: Fitbit One, Fitbit Zip, and the Digi-Walker SW-200. Participants walked on a treadmill at 3.0 MPH for trials of 500 steps and 1500 steps while a research assistant manually counted the actual steps taken. Here’s what they found:


As the data from this research isn’t available we’re left to rely on the authors description of the data. They state that differences in observed vs device recorded steps counts “ranged from−0.3% to 1.0% for the pedometer and accelerometers [waist], −22.7%to −1.5% for the wearable devices [wrist], and −6.7% to 6.2% for smartphone applications [phone apps].” Overall the authors concluded that devices and smartphone apps were generally accurate for measuring steps. However, much of the press around this study dipped into the realm of sensationalism or attention grabbing headlines, for instance: Science Says FitBit Is a Joke.

Part of our work here at Quantified Self Labs is to encourage and help individuals make sense of their own data. After reading this research letter, or one of the many articles which covered it, you might be asking yourself, “I wonder if my device is accurate?” or “Should I be using a step tracking device or just my phone?” In the interest of helping people make sense of their data so that they can come to their own conclusions I decided to do a quick analysis of my own personal data.

For this analysis I examined the step data derived from my Fibit One and the Moves app I have installed on my iPhone 5. (Important note: the iPhone 5 does not have the M7 or M8 chip present on the 5s and 6/6+, respectively, which natively tracks steps.) I had a sneaking suspicion that my data experience differed from the findings of Case and her colleagues. Specifically, I had a hypothesis that the data from every day tracking via the Moves app would be significantly different than data from my Fitbit One.


First, I downloaded and exported my daily aggregate Fitbit data for 2014 using our Google Spreadsheets Fitbit script. I then exported my complete Moves app data via their online web portal. To create a daily aggregate step value from my Moves data I collapsed all activities in the summary_2014.csv file for each day. (Side note: We’ll be publishing a series of how-to’s for doing simple data transformations like this soon). This allowed me to create a file with daily aggregate step data from both Moves and my Fitbit for each day of 2014. Unfortunately I did not have my Fitbit for the first few weeks of 2014 so the data represents steps counts for 342 days (1/24/14 to 12/31/14).


I found that my Fitbit One consistently reports a higher number of total steps per day than my Moves app. Overall, for the 342 days I had 689,192 more steps reported by Fitbit than by the Moves app. The descriptive information is included in the table below:


Another way to look at this is by visualizing both data sets across the full time-frame:

Click for interactive version in Google docs.

Click for interactive version in Google docs.

There a few interesting things to point out in this dataset. On two days I have 0 steps reported from my Moves app. One day, Moves was unable to connect with their online service due to me being in an area with little to no cell signal. On the other day my phone was off, probably due to an iOS 8 release and having to reboot my phone a few times.

It is also clear to me that differences in data are related to how I wear my Fitbit and use my phone. For my Fitbit, it is basically on my hip from the time I wake up until the time I go to bed each night. However, my phone isn’t always “on my body” throughout the day. I think this is probably the case for more people.

Since I wear my Fitbit at all times some of the data it captures erroneously is included in the total step count. For instance, for the last few months in this data set I was commuting about 10 miles per day during the week by bike. This data is accurately captured as cycling by Moves, but captured as steps by my Fitbit. Therefore some over-reporting by Fitbit is present in the data.


For my own data I found that the Fitbit reports higher steps on most, if not all days, than the Moves app on my iPhone 5. There are a few caveats with this data and analysis that are worth mentioning. First, this exploration was intended to begin a conversation around the real-world use of activity monitoring apps and devices, and the data they collect. It was not intended as a statement on truth or validity (however I would welcome the help of a volunteer to follow me around with a manual clicker counting all my steps). Second, this analysis was undertaken in part to help you understand that scientists of all types, be it citizen or academic, have the ability to work with their own data in order to come to their own conclusions about what works or doesn’t work for them. Lastly, this analysis was completed very quickly and I am sure that other individuals may have different ideas about how to explore and analyze the data. For this reason I’m posting the daily aggregate values in a open Google Spreadsheet here.

If you’re inspired to analyze your own data in this way we’d love to hear from you. Reach out on twitter or send us an email. We’re listening.

Posted in Discussions, Lab Notes | Tagged , , , , , , , | 3 Comments

What We Are Reading

Below you’ll find this week’s selection of interesting bits and pieces from around the web. Enjoy!

Open Books: The E-Reader Reads You by Rob Horning. A fantastic essay about the nature of delight and discovery, and how that may (is) changing due to data collected from e-readers. For those interested in books and data this article By Buzzfeed’s Joseph Bernstein is also an interesting read.

Flashing lights in the quantified self-city-nation by Matthew W. Wilson. Quantified Self, smart cities, and Kanye West quotes – this commentary in the Regional Studies, Regional Science journal has it all. Read closely, especially the final paragraph, which gives space to think about the role the institutions and companies that provide cities with the means to “be smart” have in our in social and urban spaces.

Most Wearable Technology Has Been a Commercial Failure, Says Historian by Madeleine Monson-Rosen. This is a interesting book review for Susan Elizabeth Ryan’s Garments of Paradise which had me thinking about the nature of wearables, customization, and expression.

‘The Cloud’ and Other Dangerous Metaphors by Tim Hwang and Karen Levy. This was mentioned so many times over the last few days by so many smart friends and colleagues that I had to set aside time to read it. It was time well spent. The authors make the case that how we talk about data (personal, public, mechanical, and bioligical) is tied to the metaphors we use, and how those metaphors can either help or hinder the broader ethical and cultural questions we find ourselves grappling with.

Why the Internet Should Be a Public Resource by Philip N. Howard. This isn’t the first, nor will it be the last, argument for changing the way we think about and regulate the Internet. Worth reading the whole things, but in case you don’t consider this point:

And then we might even imagine an internet of things as a public resource that donates data flows, processing time, and bandwidth to non-profits, churches, civic groups, public health experts, academics, and communities in need.

Computers Are Learning How To Treat Illnesses By Playing Poker And Atari by Oliver Roeder. How does research into algorithms and AI intended for winning poker games morph into something that can optimize insulin treatment? An interesting exploration on the background and future implications of computers that can learn how to play games.

Data Stories #45 With Nicholas Felton. by Enrico Bertini and Moritz Stefaner. In this episode of the great Data Stories podcast Nicholas Felton talks about his background, his interest in typography, and what led him to start producing personal annual reports. Super fun to listen to them geek out about the tools Nicholas uses to track himself.

Increasingly, people are tracking their every move by Mark Mann. A great peak into some of our QS Toronto community members and how they use self-tracking.

Quantified Existentialism by Ernesto Ramirez. I’m putting this last here because it feels a bit self-congratulatory. Earlier this week I took some time to examine how common it is for people to express their relationship with what counts when they use self-tracking tools. It was a fun exercise.

Insights From User Generated Heart Rate Variability Data by Marco Altini. While not a personal show&tell (however, I’m sure his data is in there somewhere), this great post details what Marco was able to learn about HRV based on 230 users and 13,758 recordings of HRV.

Quantify This Thursday: No Coding Required by Kerri MacKay. A bit different post here, more of a how-to, but I found it really compelling the lengths Kerri went to get get her Fitbit data to show up on he Pebble watch. I was especially drawn to her explanation of why this method is important to her:

The reality is, getting nudges every time I look at the clock or dismiss a text notification on my Pebble (via my step count) is yet another way to make the wearing-a-wearable less passive and the data meaningful.

Correlating Weight with Blood Pressure by Sam. A short and simple post detailing how Sam used Zenobase and his iHealth devices to see how weight loss was associated with his blood pressure.

The Effect of End of Year Festivities on Health Habits by Withings. The above is just one of four great visualizations from Withings exploring how the holidays affect how users sleep, move, and weight themselves. Unsurprisingly people are less likely to weight themselves on Christmas day (I looked at my data, I am among those non-weighers).

Simon Buechi: In Pure Data by Simon Buechi. A simple, elegant dashboard intended to represent himself to the world.

Grad School Coding Analysis by Matt Yancey. The above is just a preview of two fantastic visualizations that summarize the coding Matt did while enrolled in the Northewestern Masters of Analytics program.

News Year’s Eve Celebration in Steps by Lenna K./Fitbit. A fun visualization describing differences in how people in different age groups moved while celebrating the new year.

From The Forum
How do I visualize information quickly? (mobile app)
Monitoring Daily Emotions
Best Heartrate Monitor that syncs with Withings Ecosystem
Is the BodyMedia Fit still alive?
Capture Online Activities (and More) into Day One Journal Software (Mac/iOS)

Posted in What We're Reading | Tagged , , , , , , | Leave a comment

What We Are Reading

Have a great time exploring these links, posts, and visualizations!

At Quantified Self, I forget I have Parkinson’s by Sara Riggare. Sara is a longtime member of our worldwide QS community and this heartfelt post about her experience at our conferences was wonderful to read. Experience the conference yourself and meet Sara at our QS15 Global Conference and Exposition. Register here 

Standards for Scientific Graphic Presentation by Jure Triglav. Jure is a doctor, developer, and researcher interested in how data is presented in the sciences. In this post he goes back in time to look at previous standards for presenting data that have largely been forgotten.

Painting with Data: A Conversation with Lev Manovich by Randall Packer. In this great interview, researcher, artist, and visualization expert, Lev Manovich, explains his latest work on exposing a window onto the world through photos posted to popular social apps.

Big Data, LIke Soylent Green is Made of People by Karen Gregory. A thoughtful essay here on automation, algorithmic living, and the change in value of human experience.

“In the production of these massive data sets, upon which the promise of “progress” is predicated, we are actually sharing not only our data, but the very rhythms, circulations, palpitations, and mutations of our bodies so that the data sets can be “populated” with the very inhabitants that animate us.”

When Fitbit Is the Expert Witness by Kate Crawford. I almost didn’t include this article in this week’s list. The story has been circulated so many times around the web this week, mostly without any real thought or examination. However, I found that Kate Crawford did a good job putting this news in context without resorting to sensationalism.

How California’s Crappy Vaccination Policy Puts Kids At Risk by Renee DiResta. A bit of a sensational title, but a great post that uses a variety of open data sources to showcase a growing concern about childhood vaccination policies in California.

How I Used RescueTime to Baseline My Activity in 2014 and Set Goals for 2015 by Jamie Todd Rubin. I’ve been a big fan of Jamie’s writing since I found it earlier this year. He’s voracious self-tracker, mostly related to his tracking and understanding his writing, and this post doesn’t disappoint.

Sleeping My Way to Success with Data by Pamela Pavliscak. A great post by Pamela here about her experience starting tracking her sleep with the Sleep Cycle app. A great combination of actual data experience and higher-level thoughts on what it means to interface with personal data. I especially love this quote referencing her experience interacting with other sleep trackers,

“And they are doing the same thing that I’m doing — creating data about themselves, for themselves.”

Into the Okavango by The Office for Creative Research. A really neat interactive project by researchers, scientist, and the local community to document an expedition into the Okavango Delta in Botswana.

A Day in the Bike Commuting Life by Strava. The data science team at Strava put together a neat animation comprised of one-day of cycling commutes in San Francisco. Unsurprisingly, the Golden Gate Bridge is quite popular among cyclists.

From the Forum
Sleep tracking for new parents
Different Approach to ZEO Headband
Hello Everybody!
New Self-Quantifier

Posted in What We're Reading | Tagged , , , , , | 1 Comment

What We Are Reading

We had a lot of fun putting together this week’s list. Enjoy!

A Spreadsheet Way of Knowledge by Steven Levy. A few weeks ago we noted that it was the 35th anniversary of the digital spreadsheet. Steven Levy noticed too and dug up this piece he wrote for Harpers in 1984. If you read nothing else today, read this. First, because we should know where our tools come from, their history and inventors. And second, but not last nor least, because it has wonderful quotes like this:

“The spreadsheet is a tool, and it is also a world view — reality by the numbers.”

The Ethics of Experimenting on Yourself by Amy Dockser Markus. With new companies cropping up to help individuals collect and share their personal data there has been an increased interest in citizen science. A short piece here at the Wall Street Journal lays the groundwork for what may become a contentious debate between the old vanguards of the scientific institution and the companies and citizens pushing the envelope. (The article is behind a paywall, but we’ve archived it here.)

Better All The Time by James Surowiecki. I started reading this thinking it would be another good piece about the digitization of sport performance and training, and it was, but only partly. What begins with sports turns into a fascinating look at how we are succeeding, and in some cases failing, to improve.

Article 29 Data Protection Working Party: Opinion 8/2014 on the Recent Developments on the Internet of Things. Do not let the obscure boring title fool you, this is an important document, especially if you’re interested in personal data, data privacy, and data protection rights. Most interesting to me was the summary of six challenges facing IoT data privacy and protection. I’m also left wondering if other countries may follow the precedents possibly set by this EU Working Party.

30 Little-Known Features of the Health and Fitness Apps You Use Every Day by Ash Read / AddApp. Our friends at AddApp.io put together a great list of neat things you may or may not know you can do with various health and fitness apps.

Man Uses Twitter to Augment his Damaged Memory by John Paul Tiltow. Wonderful piece here about Thomas Dixon, who uses Twitter to help document his life after suffering a traumatic brain injury that severely diminished his episodic memory. What makes it more interesting is that it’s not just a journal, but also a source of inspiration for personal data analysis:

”Sometimes if I have like an hour, I’ll be like ‘How’s the last week been?’“ Dixon says. ”I’ll look at the past week and I’ll go, ‘Oh, okay. I really do want to get a run in.’ So I will use it to influence certain decisions.”

Patients and Data – Changing roles and relationships by David Gilbert and Mark Doughty. Another nice article about the ever-changing landscape that is the patient/provide/insurer ecosystem.

The Quantified Anatomy of a Paper by Mohammed AlQuaraishi. Mohammed is a Systems Biology Fellow at Harvard Medical School, and he’s an avid self-tracker. In this post he lays out what he’s learned through tracking the life of a successful project, a journal publication (read it here), and how he’s applying what he learned to another project.

Calories In, Calories Out by (author unknown). A fascinating post about modeling weight reduction over time and testing to see if said model actually matches up with recorded weight. Not all math and formulas here though,

“I learned several interesting things from this experiment.  I learned that it is really hard to accurately measure calories consumed, even if you are trying.  (Look at the box and think about this the next time you pour a bowl of cereal, for example.)  I learned that a chicken thigh loses over 40% of its weight from grilling.  And I learned that, somewhat sadly, mathematical curiosity can be an even greater motivation than self-interest in personal health.”

Fitness Tracker on a Cat – Java’s Story by Pearce H. Delphin. A delightful post here about tracking and learning about a cat’s behavior by making it wear at Fitbit. Who said QS has to be serious all the time?!

100 Days of Quantified Self by Matt Yancey. Matt downloaded his Fitbit Flex data using our data export how-to then set out analyzing and visualizing the data. Make sure to click through for the full visualization.

IAMI by Ligoranoreese. If you’re in San Francisco consider stoping by the Catherine Clark Gallery for this interesting exhibit. The duo, Ligoranoreese, created woven fiber optic artwork based on Fitbit data.

List of Physical Visualizations. I can’t say it any better than Mortiz Stefaner: “Remember that epic list of data sculptures and physical data visualizations? Well, it became more epic.

From the Forum
Anyone have a good way to aggregate and visualize data?
Questions about personal health tracking
Hello QS
Call for Papers: special issue of JBHI on Sensor Informatics
Sleep Tracking Device – BodyEcho


Posted in What We're Reading | Tagged , , , , , , , | Leave a comment

Jamie Williams: Exploring my Data


Jamie Williams found himself with almost two years of self-tracking data including physical activity, blood pressure, and weight. Because of his interest in data visualization and coding he decided to learn how to access it the data and work on visualizing and understanding some of the trends and patterns. In this talk, presented at the QS St. Louis meetup group, he takes a deep dive into his activity and step data as well as his blood pressure data to learn about himself and what affects his behavior and associated data.

What Did Jamie Do?
Out of pure interest in seeing what the data would reveal, Jamie utilized a combination of devices to track his physical activity, blood pressure, heart rate, weight, numbers of drinks, and automobile travel. He then went on to explore ways in which he could pull down, integrate, visualize, and ultimately make sense of what he collected.

How Did He Do It?
In order to obtain his data on a minute-level resolution, Jamie had to email FitBit for a specialized use of their API. He then employed Mathematica to develop a number of (beautiful) visualizations of his activity – along with other key moments in his life (moving to St. Louis, changing job location, preparing for a Half Marathon, etc.). Jamie was able to compare his data not only to his peers through FitBit, but also to others of his demographic in the U.S. using the publicily available NHANES data set.

What Did He Learn?
Through Jamie’s Quantified Self collection and analysis efforts, he learned a lot not only about the patterns and changes in his activity, but why they were the case. He also presented great feedback about one’s mindset when comparing to peers vs. the general population.

Withing Blood Pressure Cuff

Thank you to QS St. Louis organizer, William Dahl, and Jamie for the original posting of this talk!

Posted in Videos | Tagged , , , , , , , , | 1 Comment

How to Download Minute-by-Minute Fitbit Data


Earlier this week we posted an update to our How To instructions for downloading your Fitbit data to Google Spreadsheets. This has been one of our most popular posts over the past few years. One of the most common requests we’ve received is to publish a guide to help people download and store their minute-by-minute level step and activity data. Today we’re happy to finally get that up.

The ability to access and download the minute-by-minute level (what Fitbit calls “intraday”) data requires one more step than what we’ve covered previously for downloading your daily aggregate data. Access to the intraday data is restricted to individuals and developers with access to the “Partner API.” In order to use the Partner API you must email the API team at Fitbit to request access and let them know what you intend to do with that data. Please note that they appear to encourage and welcome these type of requests. From their developer documentation:

Fitbit is very supportive of non-profit research and personal projects. Commercial applications require additional review and are subject to additional requirements. To request access, email api at fitbit.com.

In the video and instructions below I’ll walk you through setting up and using the Intraday Script to access and download your minute-by-minute Fitbit Data.

  1. Set up your FitBit Developer account and register an app.
    • Go to dev.fitbit.com and sign in using your FitBit credentials.
    • Click on the “Register an App” at the top right corner of the page.
    • Fill in your application information. You can call it whatever you want.
    • Make sure to click “Browser” for the Application Type and “Read Only” for the Default Access type fields.
    • Read the terms of service and if you agree check the box and click “Register.”
  2. Request Access to the Partner API
    • Email the API team at Fitbit
    • They should email you back within a day or two with  response
  3. Copy the API keys for the app you registered in Step 1
    • Go to dev.fitbit.com and sign in using your FitBit credentials.
    • Click on “Manage My Apps” at the top right corner of the page
    • Click on the app you created in Step 1
    • Copy the Consumer Key.
    • Copy the Consumer Secret.
    • You can save these to a text file, but they are also available anytime you return to dev.fitbit.com by clicking on the “Manage my Apps” tab.
  4. Set up your Google spreadsheet and script
    • Open your Google Drive
    • Create a new google spreadsheet.
    • Go to Tools->Script editor
    • Download this script, copy it’s contents, and paste into the script editor window. Make sure to delete all text in the editor before pasting. You can then follow along with the instructions below.
    • Select “renderConfigurationDialog” in the Run drop down menu. Click run (the right facing triangle).
    • Authorize the script to interact with your spreadsheet.
    • Navigate to the spreadsheet. You will see an open a dialog box in your spreadsheet.
    • In that dialog paste the Consumer Key and Consumer Secret that you copied from your application on dev.fitbit.com. Click “Save”
    • Navigate back to the scrip editor window.
    • Select “authorize” in the Run drop down menu. Click run (the right facing triangle).
    • Select “authorize” in the Run drop down menu. This will open a dialog box in your spreadsheet. Click yes.
    • A new browser window will open and ask you to authorize the application to look at your Fitbit data. Click allow to authorize the spreadsheet script.
  5. Download your Fitbit Data
    • Go back to your script editor window.
    • Edit the DateBegin and DateEnd variables with the date period you’d like to download. Remember, this script will only allow 3 to 4 days to be downloaded at a time. 
    • Select “refreshTimeSeries” in the Run drop down menu. Click run (the right facing triangle).
    • Your data should be populating the spreadsheet!

If you’re a developer or have scripting skills we welcome your help improving this intraday data script. Feel free to check out the repo on Github!

Posted in Lab Notes, Personal Projects | Tagged , , , , , , , | 37 Comments

Downloading Fitbit Data: Update

We’re posting a quick note today to let you know that we’ve updated our “How To Download Your Fitbit Data” post. It now included separate instructions for both the old and new versions of Google Spreadsheets. This is just the first in a series of planned updates. We hope to post additional updates to allow you to have deeper access to your Fitbit data including, heart rate, blood pressure, and daily goal data.

If you’re using this how-to we’d love to hear from you! Are you learning something new? Making interesting data visualizations? Discussing the data with your health care team? Let us know. You can email us or post here in the comments.


Click to view the interactive version.

Posted in Lab Notes | Tagged , , , | 2 Comments

Kouris Kalligas: Analyzing My Weight and Sleep

Like anyone who has ever been bombarded with magazine headlines in a grocery store checkout line, Kouris Kalligas had a few assumptions about how to reduce his weight and improve his sleep. Instead of taking someone’s word for it, he looked to his own data to see if these assumptions were true. After building up months of data from his wireless scale, diet tracking application, activity tracking devices, and sleep app he spent time inputing that data into Excel to find out if there were any significant correlations. What he found out was surprising and eye-opening.

This video is a great example of our user-driven program at our Quantified Self Conferences. If you’re interest in tell your own self-tracking story, or want to hear real examples of how people use data in their lives we invite you to register for the QS15 Conference & Exposition.

Posted in Conference, Videos | Tagged , , , , , , , , , | 4 Comments