Topic Archives: Discussions

Quantifying in the Classroom

VL_improvingdata

Victor Lee makes data fun for kids. Victor is an assistant professor at Utah State University, where he’s been working on ways to bring the Quantified Self experience into high school classrooms to improve data literacy and expose students to “more authentic forms of inquiry.”

I first met Victor at the 2013 Quantified Self Global Conference, where we had a great conversation about QS and education. A few weeks ago, I saw this wonderful presentation of his research (a video is embedded below). I couldn’t resist the chance to ask him a few questions about his work.

If you are a teacher or a parent interested in using QS as a way to get kids into math and science, we want to especially invite you to QS15: The Quantified Self Global Conference and Exposition, where QS and Education is an important theme.

QS: What inspired you to work on data literacy as a subject area?

victor_profileVictor Lee: On the one hand, the first time I had a wearable device (a heart rate monitor, several years ago), I was impressed with the data I could receive and what kind of inferences I could make from them. This made me aware of an opportunity with the technology. At the same time, I know from my training and work as a learning scientist that data can be notoriously difficult for students (and adults) to understand and use. I have done a lot of work in the area of science education previously, and finding ways for kids to meaningfully work with and learn from data is one of the big challenges that have been documented for quite some time. Plus, the topic of data literacy is timely in that we have much greater access to data in so many forms, whether it is charts showing how the Earth’s climate is changing or if it is infographics that make the rounds on the internet. There is a lot of talk about “big data”, and if we are going to have the next generation of workers and citizens be ready to work with all of that data, we really need to work on supporting that literacy now.

QS: Your research involves students using wearable devices to generate and explore their own data. Why is having their own data an important part of this process?

VL: Informally, I talk about the benefit of wearables as helping to make it so that students have some “skin in the game”. Data that is about you is consequential because at some level, it reveals something about who you are and the things you do. In some sense, there is something inherently interesting about learning more about yourself and also comparing yourself against others or against the goals that you have set. But beyond that, there is a lot to leverage in the way of learning. One of the big ideas out of education and the learning sciences, and one that I can’t reiterate enough, is the importance of building on prior knowledge. When you look at data about yourself, you don’t strictly see points or dots or bars. You see a depiction of an experience or activity that is already intimately familiar. In some sense, you know why the data look the way that they do. If it’s exercise data, you remember what certain moments felt like. You have some expertise on how your body works and that creates some expectations and support for thinking with data. That is a really important bit of personal knowledge to leverage.

Wearables are also useful in that they expose students to some of the messier things that come along with data. You have to realize that a tracking device is doing some form of measurement and measurements are prone to some error. You get so much data that you can start to see typicality and patterns. Data are hard to collect, but being able to wear something that collects data in the background means you can collect a lot of data and see what regularity looks like. You get to see what noise looks like. You get to know what is an outlier and how that fits against the larger set of data. Too often in school, we are given these very sanitized data experiences and students don’t get to think through these things or experience them in a familiar or meaningful way.

QS: Each of your examples that you discuss during your talk were student-led and defined experiments. What role does allowing students to ask the questions play in the learning process?

VL: Students are inherently curious. They have their own interests and things they care about that speak to their experiences and their concerns. A student-centered approach to instruction tries to capitalize on that. That means looking to students for questions. It also helps to put some more skin in the game. But beyond that, it helps in learning how to actually do science. If you ask most science educators, the big goal is not to memorize facts and terms but to know how science is done and how things move from questions to data to conclusions to new questions and so on. This is critically important, and there is an even greater push for new technologies and new models in education to support this. It certainly is not easy, but I think that it is worthwhile and that the kids who get to really do it find it worthwhile too.

QS: It appears that your central thesis is “When you give them the opportunity, kids can learn hard things.” Clearly from your examples this is true. Outlier analysis, data visualization, and pattern recognition are all present. What makes the methods you’re exploring so impactful?

VL: I suspect it has to do with how the students are able to leverage their own experiences and interests. It is memorable but also consequential to something that they already do or encounter. It lets them sit in the driver’s seat when they often are put in situations that makes them more of a passenger. In fact, I think that is one of the interesting things about the Quantified Self movement. In some respects, it is increasing access to data and making it possible for people to do aspects of science or mathematics or statistics in ways that are meaningful to them.

I do also want to credit some really remarkable teachers and schools that allow for activities like this to happen. Especially in this day and age with an intense focus on testing, students don’t get as many opportunities to be curious in this way. Having motivated and flexible teachers on board certainly helps make this impactful.

QS: I was really struck by the anecdotes you shared that showed how strongly the students were affected by the lessons plans (Note: fast forward to 42:40 in the video above for a great example.) Are there any other stories that come to mind that help illustrate how students engage with these type of personal data based curriculums?

VL: We recently finished a project with a school we had never worked with previously. There were some students at this school who were really disappointed that the unit ended and they would not be able to keep working with the wearable devices that we provided (in this case, Fitbit Flex wristbands). I know one student that we worked with who was so enthusiastic that he wanted to keep on doing data collection and analysis using the kinds of tools we provided and would pull a member of my research team aside to help him plan how to keep working with data after the unit had ended. I know another student was really distraught that he was going to be absent on a day that he was set to share what he had did with activity data with the rest of the class. The teacher ended up extending things another day so that student could be there and still share his discoveries.

I may have mentioned this in the presentation, but the students who discovered outlier sensitivity were so enthusiastic about what they learned that after we shut down the cameras and were leaving, they began to boast to the other students what they had figured out and proceeded to show them how outlier sensitivity worked.

VL_quantifyingrecess

QS: You’ve done some work with trying to implement QS meetups in schools and in younger age groups. What have you learned from that experience?

VL: This has been an interesting side project. Basically, I wanted to give some students who did not have the opportunity to experience QS (in this case, some very talented and motivated high school Latina girls). Those students were terrific to work with, but the experience raised some interesting challenges and concerns about how much background infrastructure that needs to be in place to be a QSer. While they all had access to mobile devices, they were not the cutting edge. Some did not have wifi at home or bluetooth. They also felt that the latest and greatest wearable devices, while cool, didn’t fit with their aesthetic. And they had some constraints on their life circumstances that limited how much they could experiment with the devices. I presented some of these findings at a workshop as part of a recent ubiquitous computing conference. There is the potential for several potential benefits with QS being accessible to youth, but I think that this is a population with very different needs and concerns than those who are early adopters. If we want QS to be something that could be of value to youth beyond a classroom curriculum, we need to do some more targeted research and development. That’s generally something that I would be glad to pursue more in the future, as I imagine are many of my professional colleagues.

QS: Lastly, what new ideas and projects are you excited about?

VL: I am excited to do a more detailed analysis of what students learned from our most recent launch of a wearables-based data unit in the sixth grade. I am excited to potentially extend some of our findings to other grade levels and finding the best ways to address how self data could be useful in supporting rich student learning. I have been generally intrigued by the QS movement and have been trying to understand why people self-track and what they end up doing with the data they collect. There are other project in my field that I think are outstanding. At UC Davis, there is some work to get self data as input into digital games. We are actually starting to explore similar issues at Utah State. There is a neat project at CU-Boulder with kids building their own infographics, and I would love for self collected data to gradually become a part of that. I have had some side conversations with some organizations who have been thinking about wearable sensors in schools, and if those conversations continue and we are able to share what we have learned, I think there is much to be excited about in that area.

We want to thank Victor for taking the time to speak with us about his work. If you’re interested in learning more about Victor’s research we invite you to visit his faculty page and read some of this great research papers, a selection of which are linked below:

Quantified Recess: Design of an activity for elementary students involving analysis of their own movement data.
Integrating physical activity data technologies into elementary school classrooms
The Quantified Self (QS) Movement and Some Emerging Opportunities for the Educational Technology Field

Posted in Discussions | Tagged , , , , , | Leave a comment

What is a Quantified Self Conference?

If you’ve seen the announcement for our 2015 QS Conference & Expo and you’ve never been to a QS event before you may be asking yourself what our conferences are all about. From our very first meetup in 2008 through our six conferences and numerous events we’ve emphasized the role of the personal story and real-world experience. We do this in a variety of ways.

First, we run our conferences as a carefully curated unconference. When you register, you’re asked to tell us about the self-tracking projects you’re working on and other QS-related ideas you have. Our conference organization team goes through every registration, diving deep into personal websites, Twitter feeds, and blog posts. We love seeing individuals using self-tracking in new and different ways to find out something interesting about themselves and we work hard to surface truly unique and inspiring stories.

How does that manifest itself in the program? The core of our conference program is made up of the nearly two dozen show&tell talks where self-trackers get up and tell their story by answering our three prime questions: What did you do? How did you do it? What did you learn? It may seem simple, but these three questions provide a stable and consistent narrative to inspire you to learn and engage with your own tracking practice in new and different ways.

We’ve spent some time combing through our vast video archive to showcase some of our favorite talks from our previous conferences. We hope you find them enjoyable and they inspire you to join us on March 13-15 in San Francisco for our 2015 QS Conference & Expo. Who knows, maybe you’ll be on stage and we’ll be learning from you!

Sara Riggare on ‘How Not To Fall’
Sara Riggare is co-organizer of Quantified Self Stockholm. She is also an engineer, a PhD student and a tireless researcher of Parkinson’s disease. In this fascinating talk, Sara describes using body sensors to help her control her gait.

Vivian Ming on Tracking Her Son’s Diabetes
Vivienne Ming is an accomplished neuroscientist and entrepreneur. Two years ago her son, Felix, was diagnosed with Type 1 Diabetes. In this talk, presented at the 2013 Quantified Self Global Conference, Vivienne explains what they’re learning as they track and analyze his data

Chris Bartley on Understanding Chronic Fatigue
While on a research trip, Chris contracted Reiter’s Syndrome. After his recovered, something still didn’t feel right. Chris consulted his physician and started tracking his wellness along with his diet and supplement intake. What follows is an amazing story about what Chris learned when he started applying his knowledge of statistics to his own data.

Adrienne Andrew Slaughter on Tracking Carbs and Exercise
Adrienne Andrew Slaughter was testing out a new diet that included carbohydrate restriction. At the same time she was commuting to work on a bike. She started to notice feeling tired and slow during her commutes and wondered if her dietary changes had anything to do with it. Luckily, Adrienne was tracking her commutes and her diet and was able to run detailed data analysis to find out what happens when she goes carbless.

Bob Troia: Understanding My Blood Glucose
Bob Troia isn’t a diabetic and he’s not out of range, but he wanted to see if he could lower his fasting glucose levels. He started a long-term tracking experiment where he tested his blood glucose and began to explore the effects of supplementation and lifestyle factors.

Sacha Chua on Building and Using A Personal Dashboard
Sacha Chua started tracking her clothes to make sure she was varying her wardrobe on daily basis. This led he to ask, “What else can I track?” As she added time tracking, food, library books, and so much more (you can view the whole set on QuantifiedAwesome.com)

Robby Macdonnell on Tracking 8,000 Screen Hours
For the last six years Robby Macdonnell has been tracking his productivity and how he spends his time on his various computers (home and work) and even how he uses phone. Over those years he’s amassed 8,300 hours of screen time. Watch his great talk to hear what’s he learned about his work habits, productivity and how he’s come to think about time.

Sky Christopherson on Self-Tracking at the London Olympics
Sky Christopherson first shared his experience with tracking and improving his sleep in 2012. That tracking led him on a path to achieving a world record as a mastars level track cyclists. Later that year, Sky began helping other athletes us self-tracking and personal data to obtain their best performances, culminating in a surprise silver medal for the 2012 women’s olympic track cycling team, on which he served as a training advisor. In March of this year, Sky and his wife Tamara gave another QS talk at our Bay Area Meetup in which they told the wonderful story of how the 2012 Olympic team rode to their medal, a journey captured in the documentary, Personal Gold.

These are only a small sample of the amazing talks and self-tracking projects that are shared at our Quantified Self Conferences. We’d love to hear your story. Register today and let us know what you’re working on!

Posted in Conference, Discussions | Tagged , , , , | Leave a comment

Wrist Wearables: How Many Are There?

In response to the much anticipated reveal of the Apple Watch I did a bit of digging around to find out where we stand with wrist-worn wearable devices. I found over 60 different devices. The following list focuses on self-tracking tools, I intentionally left out those that work only as notification centers or secondary displays for your phone. I’m sure this isn’t all of them, but it’s as good a place to start as any. If you’re using one of these devices to learn something about yourself, or you’re just interested in these type of wearable tools we invite you to join us in San Francisco on March 13-15, 2015, for our QS15 Conference & Exposition.

(Thank you to all those who commented here, on Twitter, and on our Facebook group pointing us to additional devices to add!)

Adidas has two devices:
Fit Smart
Sensors: Accelerometer, Heart Rate (optical)
Smart Run
Sensors: GPS, Accelerometer, Heart Rate (optical)

Angel
Sensors: Accelerometer, Heart Rate (optical), Blood Oxygen, Temperature

Amiigo
Sensors: Accelerometer, Pulse Oximeter, Temperature

Apple Watch
Sensors: Accelerometer, Gyroscope, Heart Rate (optical)

Asus ZenWatch
Sensors: Materials state the ZenWatch houses a “bio sensors and 9-axis sensor.” I assume optical heart rate, accelerometer, and gyroscope.

Atlas
Sensors: Accelerometer, Gyroscope, Heart Rate (optical)

Basis
Sensors: Heart Rate (optical), Accelerometer, Perspiration, Skin Temperature.
(Note: Intel & Basis today also announced the new Basis Peak to be released this year.)

DigiCare ERI
Sensors: Accelerometer, Temperature, Pressure

Epson Pulsense Band/Watch
Sensors: Accelerometer, Heart Rate (optical)

Fatigue Science Readiband
Sensors: Unknown

Fitbit Flex
Sensor: Accelerometer
Continue reading

Posted in Discussions, Tool Roundups | Tagged , , , , , , , | 12 Comments

Apple Announcement: QS Links, Comment, and Background

Here at QS Labs we’re very interested to see what Apple will be announcing today. The following post with reactions and discussion by Gary Wolf & Ernesto Ramirez will be updated as we learn more.

Posted in Discussions | Leave a comment

Access Matters

Someday, you will have a question about yourself that impels you to take a look at some of your own data. It may be data about your activity, your spending at the grocery store, what medicines you’ve taken, where you’ve driven your car. And when you go to access your data, to analyze it or share it with somebody who can help you think about it, you’ll discover…

You can’t.

Your data, which you may have been collecting for months or years using some app or service that you found affordable, appealing, and useful, will be locked up inside this service and inaccessible to any further questions you want to ask it. You have no legal right to this data. Nor is there even an informal ethical consensus in favor of offering ordinary users access to their data. In many cases, commercial tools for self-tracking and self-measurement manifest an almost complete disinterest in access, as demonstrated by a lack of data export capabilities, hidden or buried methods for obtaining access, or no mention of data access rights or opportunities in the terms of service and privacy policy.

Now is the time to work hard to insure that the data we collect about ourselves using any kind of commercial, noncommercial, medical, or social service ought to be accessible to ourselves, as well as to our families, caregivers, and collaborators, in common formats using convenient protocols. In service to this aim, we’ve decided to work on a campaign for access, dedicated to helping people who are seeking access to their data by telling their stories and organizing in their support. Although QS Labs is a very small organization, we hope that our contribution, combined with the work of many others, will eventually make data access an acknowledged right.

The inspiration for this work comes from the pioneering self-trackers and access advocates who joined us last April in San Diego for a “QS Public Health Symposium.” Thanks to funding support from the Robert Wood Johnson Foundation, and program support from the US Department of Health And Human Services, Office of the CTO, and The Qualcomm Institute at Calit2, we convened 100 researchers, QS toolmakers, policy makers, and science leaders to discuss how to improve access to self-collected data for personal and public benefit.  During our year-long investigation leading up to the meeting, we learned to see the connection between data access and public health research in a new light.

If yesterday’s research subjects were production factors in a scientist’s workshop; and if today’s participants are – ideally – fully informed volunteers with interests worthy of protection; then, the spread of self-tracking tools and practices opens the possibility of a new type of relationship in which research participants contribute valuable craft knowledge, vital personal questions, and intellectual leadership along with their data.

We have shared our lessons from this symposium in a full, in-depth report from the symposium, including links to videos of all the talks, and a list of attendees. We hope you find it useful. In particular, we hope you will share your own access story. Have you tried to use your personal data for personal reasons and faced access barriers? We want to hear about it.

You can tweet using the hashtag #qsaccess, send an email to labs@quantifiedself.com, or post to your own blog and send us a link. We want to hear from you.

The key finding in our report is that the solution to access to self-collected data for personal and public benefit hinges on individual access to our own data. The ability to download, copy, transfer, and store our own data allows us to initiate collaboration with peers, caregivers, and researchers on a voluntary and equitable basis. We recognize that access means more than merely “having a copy” of our data. Skills, resources, and access to knowledge are also important. But without individual access, we can’t even begin. Let’s get started now.

An extract from the QSPH symposium report

[A]ccess means more than simply being able to acquire a copy of relevant data sets. The purpose of access to data is to learn. When researchers and self-trackers think about self-collected data, they interpret access to mean “Can the data be used in my own context?” Self-collected data will change public health research because it ties science to the personal context in which the data originates. Public health research will change self-tracking practices by connecting personal questions to civic concerns and by offering novel techniques of analysis and understanding. Researchers using self-collected data, and self-trackers collaborating with researchers, are engaged in a new kind of skillful practice that blurs the line between scientists and participants… and improving access to self-collected data for personal and public benefit means broadly advancing this practice.

Download the QSPH Report here.

Posted in Discussions, Lab Notes | Tagged , , , , , | 1 Comment

Diabetes, Metabolism, and the Quantified Self

dougkanter2

This is a visualization of one month of my blood sugar readings from October 2012. I see that my control was generally good, with high blood sugars happening most often around midnight (at the top of the circle). -Doug Kanter

Richard Bernstein, an engineer with diabetes, pioneered home blood glucose monitoring. What he learned about himself contradicted the medical doctrine of his day, but Bernstein went on to become an MD himself, and established a thriving practice completely devoted to helping others with diabetes. We think of Dr. Bernstein as a hero because he used self-measurement to support his own learning, and shared what he learned for general benefit.

Tracking personal metabolism is a necessity for diabetics, and it is also something that will become increasingly common for many people who want to understand and improve their metabolism. Diabetics are also leading the fight for personal access to personal data, and we’re looking forward to meeting inspiring activists and toolmakers today at the DiabetesMine D-Data Exchange meeting in San Francisco. In honor of this meeting, we’ve put together an anthology of sort of QS Show&Tell talks about diabetes and metabolism data.

Jana Beck
Jana is a Type 1 diabetic and data visualization practitioner who has been working on creating new techniques for understanding that data from her Dexcom continuous blood glucose monitor. In this talk, she described some of her newest techniques and her ongoing work with Tidepool.org. You can also view her original QS show&tell talk here.

Doug Kanter
Doug has been featured here on the QS website many times. We first learned about Doug through his amazing visualizations of his own data (like the image above). At the 2013 QS Global Conference, Doug shared what he learned from tracking his diabetes, diet, activity, and other personal data and his ongoing work with the Databetes project.

We spoke with Doug about his experience with tracking, visualizing and understanding his diabetes data. You can listen to that below.

James Stout
James is a graduate student, professional cyclist, and a Type 1 diabetic. In this talk at the QS San Diego meetup group he talked a bit about how he manages his diabetes along with his near super human exercise schedule and how he uses his experience to inspire others. (Check out this great article he wrote for Ride Magazine.)

Brooks Kincaid
Brooks, a Type 1 diabetic, was tracking his blood glucose manually for years before switching to a continuous blood glucose meter. In this talk he describes what he’s learned from his data and why he prefers a modal day view.

Bob Troia
Bob tracked his fasting blood glucose, diet, and activity to find out what could help him lower his risk of developing type 2 diabetes.

Vivienne Ming
Vivienne’s son was diagnosed with Type 1 Diabetes two years ago and she’s applied her scientific and data analysis background to understand her son’s life.

Seth Roberts
Seth has a long history of tracking and experimenting with his metabolic data. In one of his last QS talks, he spoke about how alternate day fasting was impacting his blood sugar.

Posted in Discussions | Tagged , , , , , , , , , , | 1 Comment

QSEU14 Breakout Session: QS & Philosophy

A core piece of our conferences are the numerous breakout sessions that cover a wide variety of topics from social sciences to hands-on workshops on privacy and data security. These sessions are facilitated by conference attendees and they put in a lot of work to engage their groups in meaningful discussion. This year, starting with our European Conference, we are going to extend the discussion outside of the conference. Below you can read a description of the breakout by the individual(s) who led the discussion. We invite you to follow up and continue the conversation in our forum, where we’ve carved out a special place for each separate discussion.

Today’s post comes to us from Joerg Blumtritt, who led the QS & Philosophy breakout session at the 2014 Quantified Self Europe Conference. You’re invited to read his take on the session and then join the discussion on the QS Forum.

QSPhilosophyThe session “QS and Philosophy” was originally intended as something like “Ideologies of QS”: I want to advocate for an open data culture without fear; however I felt the urge to discuss some topics that I felt left open in conversations I had experienced with trackers and gadgets-people, too often during the last months; explicitly my feeling that an idea of self-betterment could entail the fiction, that everyone really can take responsibility for their lives.

The #QSEU14 conference has brought these topics, that I had felt concerned with, even to the plenary programme, e.g. having Josh Berson’s emotional statement against this “liberal fallacy” as you might call it. So I learned that many of us were bothered by these questions, and an open conversation would take place all accross the conference. This gave room in my session to look into the future of QS on a broader perspective.

If QS would become a mass phenomenon (which none of us would have doubts about), will we feel a rise in moral expectations and control? Will our communities be looking after us, taking care, encouraging us, as well as discipline us? A participant in the session told the example of nanny-tracking on facebook, certainly a nasty form of abusing tracking for surveillance. Thus there is need to make a clear stand what is acceptable, and what we should expell from our community; and we have to consider how hierarchy and power (or the lack of it) will influence the effect of our practices. And we should consider in how far self-tracking flips into “other-tracking”. We discussed to some extension, if there is an option to just track yourself without touching others, at all; at least if you start sharing data within a community and built connections to others via your shared data.

The culture of tracking, sharing data, caring for others’ data, too, shows aspects of village life; we care for each other, but we also “get watched” that way. On the one hand, this might sound frightening. On the other hand, do we have the chance to change from “the state” or “the government” enforcing social rules in an authoritarian way, to get to an emergent system? Could we evolve the “QS philosophy” into an operating system that helps people on large scales to live together in a sustainable way?

One important aspect is algorithm ethics – implicit value judgements built into our technologies, often in the form of parameters that someone just set to a certain value without knowing or even considering the consequences. Value judgements are neither per se bad nor avoidable. However, it is our responsibility to demand access to the “black boxes”, to have transparency with technology that effects on our lives, and as makers of such technology to grant others access and have an open conversation with them.

Pre start, I had felt uncomfortable, even demanding (maybe pretentious) with my ethics debate. I was blown away about the turn that the conference as a whole made, in making the ethics debate a major topic from the very first talk to the farewell.

You can view slides from this breakout session here:

Interested in discussing the Philosophy of QS? Join the discussion on the forum!

Posted in Conference, Discussions | Tagged , , , , , , , | 3 Comments

QS: Five years, Five lessons

Today’s post comes to us from Rajiv Mehta, our longtime friend and co-organizer of the Bay Area Quantified Self Meetup group. Rajiv is also leading the team behind UnfrazzledCare, a media and application development company focused on the caregiving community.

“What lessons have we learned through Quantified Self meetings and conferences that would benefit entrepreneurs looking to enter this space?” That’s what I was asked to comment on at a recent event on Quantified Self: The Next Frontier in Mobile Healthcare organized by IEEE and TiE. The workshop took place on September 19, 2013, almost exactly five years after the first QS meetup, naturally leading to a theme of 5 years and 5 lessons.

The 5 themes I discussed were:

  • How difficult it is to get an accurate measure on the “market size” for self-tracking, though according to some measures it is a very common activity.
  • The importance of and excitement surrounding new sensor technologies, but also what we have learned about our in-built human sensors and the challenges of making sense of the data.
  • The need to treat feedback loops with caution; that thoughtful reflection is sometimes better than quick reaction.
  • About engagement and motivation, about how so many are drawn to QS through a desire to change their own behaviors, and how QS experiences match behavior science research.
  • The value of self engagement, and how self-trackers often learn something even when their experiments aren’t successful.

My slides include my talking points, in small text below the slides. If you view this full-screen, you should be able to read the small text.




Several other QS regulars participated in this workshop. Rachel Kalmar, who runs the Sensored meetup group and is a data scientist with Misfit Wearables, gave a keynote on some of the technology challenges facing those working on the sensing devices. These ranged from the fundamental (“What exactly is a step?”) to prosaic (batteries!), and from business issues (data openness vs competitive advantage) to human issues (accuracy vs wearability). Dave Marvit, of Fujitsu Labs, shared some of their work on real-time stress tracking and his thoughts on the issue of “quantifying subjectivity”. Sky Christopherson, of Optimized Athlete, told the audience of his own health-recovery through self-tracking and how he helped the US women’s track cycling team to a dramatic, silver-medal performance at the London Olympics. QS supports his passion for “data not doping” as a better route to athletic excellence. And Monisha Perkash showed off Lumoback.

You can watch the whole event online. Part 1 includes Rachel and Dave. Part 2 includes Rajiv, Monisha, and Sky.

Posted in Discussions | Tagged , , , | Leave a comment

We Need a Personal Data Task Force

Earlier today John Wilbanks sent out this tweet:

 

John was lamenting the fact that he couldn’t export and store the genome interpretations that 23&Me provides (they do provide a full export of a user’s genotype). By the afternoon two developers, Beau Gunderson and Eric Jain, had submitted their projects. (You can view them here and here).

We’ve doing some exploration and research about QS APIs over the last two years and we’ve come to understand that having data export is key function of personal data tools. Being able to download and retain an easily decipherable copy of your personal data is important for a variety of reasons. One just needs to spend some time in our popular Zeo Shutting Down: Export Your Data thread to understand how vital this function is.

We know that some toolmakers already include data export as part of their user experience, but many have not or only provide partial support. I’m proposing that we, as a community of people who support and value the ability to find personal meaning through personal data, work together to provide the tools and knowledge to help people access their data.

Would you help and be a part of our Personal Data Task Force*? We can work together to build a common set of resources, tools, how-to’s and guides to help people access their personal data. I’m listening for ideas and insights. Please let me know what you think and how you might want to help.

Replies on our forum or via email are welcomed.

*We’re inspired by Sina Khanifar’s work on the Rapid Response Internet Task Force.

Posted in Discussions | Tagged , , , , , | 2 Comments

A Quantified Self Festival: The Knight News Challenge

Earlier this summer we found out that the Knight Foundation was launching a challenge centered on funding “innovative ideas to harness information and data for the health of communities.” We decided that this would be a great opportunity to propose a program idea we’ve wanted to work on for a long time: A Quantified Self Civic Festival. The idea of the festival is that the highest value in personal data lies in its usefulness for self-discovery, both individually and in our communities.

Traditionally, research questions about health and wellness are addressed from the top down. Professionals choose which health measures are important, while citizens are seen mainly as sources of data and recipients of expert advice. We’d like to help turn this world upside down, inspiring individuals, families, and communities to define what they’d like to track, and why, while enlisting experts as servants to a broadly popular adventure in making knowledge. (A guiding principle of the festival would be that participants have maximum control over their own data.)

We’d love your feedback. You can comment here, but it would be very helpful if you commented on the challenge website. While you’re there, take a look at some of the other wonderful entries. There is a wealth of inspiration and we’re excited to see what comes out of this work.

Posted in Discussions, Lab Notes | Tagged , , , | 1 Comment