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The Case-Crossover Design: A Method for Studying
Transient Effects on the Risk of Acute Events

Malcolm Maclure

A case-control design involving only cases may be used when brief exposure causes
a transient change in risk of a rare acute-onset disease. The design resembles a
retrospective nonrandomized crossover study but differs in having only a sample of the
base population-time. The average incidence rate ratio for a hypothesized effect period
following the exposure is estimable using the Mantel-Haenszel estimator. The duration
of the effect period is assumed to be that which maximizes the rate ratio estimate. Self-
matching of cases eliminates the threat of control-selection bias and increases efficiency.
Pilot data from a study of myocardial infarction onset illustrate the control of within-
individual confounding due to temporal association of exposures. Am J Epidemiol
1991:133:144-53.
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To test hypotheses concerning the imme-
diate determinants of myocardial infarction,
my colleagues and I launched a case-control
study ("The Onset Study"). We were
prompted by confirmation of the morning
peak in the circadian pattern of myocardial
infarction incidence (1), which cast doubt
on the widespread belief that the vast major-
ity of infarctions occur purely at random (2).
We hypothesized that many myocardial in-
farctions are triggered by activities during
the hours or days before (3).

The choice of control group was not
straightforward. Healthy representatives of
the general population are no longer easy to
recruit in the Boston area. Participation rates
have dropped from 90 percent in the late
1960s (4) to 60 percent in the 1980s (5).
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Moreover, interviews with healthy subjects
would tend to be scheduled at less hectic,
less active times. On the other hand, almost
any hospital control group would also suffer
selection bias: many emergency hospitaliza-
tions (fractures, lacerations, acute gallblad-
der disease) are due to risk factors that are
of interest to the Onset Study, such as phys-
ical exertion, alcohol intake, anger, and
heavy eating; hospitalizations for chronic
illnesses would be preceded by periods of
atypical activities and exposures.

Returning to first principles, as defined by
the case-base paradigm (6), we asked the
question, who would be the best represent-
atives of the population base that produced
the cases? A simple answer was the cases
themselves. This led us to develop the case-
crossover design.

METHOD

Relation to other crossover studies

According to the case-base paradigm, a
case-control study is a retrospective follow-
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The Case-Crossover Design 145

TABLE 1. Association of theophylline use with shortness of breath on exertion, after 10 weeks of
treatment or placebo, in a randomized double-blind crossover experiment with one subject, McMaster
University, 1985 (adapted from reference 8)

Severe shortness of breath on exertion
No. of 10-week periods of pfll use

Risk
Risk ratio

TheophylBne

2
2
1.0

00

Placebo

0
2
0.0

up study employing a sample, rather than a
full census, of the population base. It follows
that most types of follow-up study should
have case-control counterparts. The case-
crossover design is the counterpart to a co-
hort study with crossover of subjects be-
tween periods of exposure and nonexposure.

The term "crossover" is mainly used to
describe experiments in which all subjects
pass through both the treatment and placebo
phases. In these studies, each subject serves
as his or her own control—"the ultimate
form of statistical adjustment" (7) for con-
founding by constant subject characteristics.
However, "crossover" need not imply ran-
domization. It is an apt term for intermittent
exposure to factors with transient effects,
because the subjects cross back and forth
between periods of different risk.

The relation of the case-crossover design
to a prospective crossover study can be ex-
plained most simply by considering a real
crossover experiment involving only one
subject—an asthmatic given theophylline or
placebo according to a randomized, double-
blind regimen (8). Table 1 (adapted from
table 1 in reference 8) shows that severe
shortness of breath on exertion was actually
more common in this patient after 10 weeks
of using theophylline than after 10 weeks of
placebo. Suppose the outcome were myo-
cardial infarction instead of shortness of
breath. The experiment would be infeasible
because it would be unethical and because
the probability of an infarction would be
extremely low.

Similar data to those in table 1 could be
assembled retrospectively, however, as shown
in tables 2 and 3. If the same patient were
to suffer an infarction and be interviewed as
a subject in a case-crossover study, he might

TABLE 2. Hypothetical retrospective data from a
patient who reported using theophylline twice per
day and suffered a myocardial infarction less than
2 hours after last theophylline use

Within 2 hours
of last

theophylline
use*

Yes No

Myocardial infarction 1 0
Person-nours 4 20
Rate ratio »

• It is assumed arbrtrarty that the theophylline effect on risk
of Infarction lasts onry 2 hours.

TABLE 3. Hypothetical retrospective data from a
patient who reported using theophylline twice per
day and suffered a myocardial infarction more than
2 hours after last theophylline use

Within 2 hours
of last

theophylline
use*

Yes No

Myocardial infarction 0 1
Person-hours 4 20
Rate ratio 0

• It Is assumed arbltrarty that the theophylBne effect on risk
of Infarction lasts only 2 hours.

report taking theophylline twice per day dur-
ing the past month, the last time being less
than 2 hours before the infarction. To esti-
mate the relative risk of infarction over a 2-
hour period following use of theophylline,
his data would be tabulated as in table 2.
Table 3 shows how the data would appear if
his last dose of theophylline had been more
than 2 hours before infarction onset.

These must be regarded as case-control
data because information on the patient's
usual frequency of theophylline intake are
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146 Maclure

based on only a truncated follow-up inter-
val—just a sample of the much longer time
he would have been followed in a prospec-
tive cohort study. On the other hand, they
resemble cohort data because the control
data have units of person-time, not counts,
as in the usual case-control study. The pa-
rameter estimated in the analysis of case-
crossover data is therefore the average inci-
dence rate ratio. To adjust for the self-
matching of cases, data from each subject
are treated as if they were from a matched
pair. Methods of rate ratio estimation appro-
priate for sparse follow-up data are used (9).
Thus, the analysis of a case-crossover study
with 100 cases may be viewed as a pooled
analysis of 100 retrospective cohort studies
each with a sample size of one.

Mantel-Haenszel estimator

Table 2 can be modeled as an independent
binomial observation with a fixed "success"
probability equal to the proportion of time
the person usually spends in the "effect-
period" following recurrent exposure epi-
sodes. (In tables 2 and 3, the effect-period is
arbitrarily assumed to be 2 hours.) Green-
land and Robins (9) have shown that the
Mantel-Haenszel estimator of the rate ratio
(RRMH), and a corresponding estimator of
the variance of its logarithm, are unbiased
for sparse person-time data.

Calculation of the rate ratio can be illus-
trated using the example of the asthmatic
patient. If the coincidence of theophylline
intake and myocardial infarction (table 2)
were purely due to chance, then the asth-
matic patient would have been about five
times more likely to say his last use of the-
ophylline was more than 2 hours before his
infarction (table 3). These odds are reflected
in the control data in both tables: the total
time per day within 2 hours after theophyl-
line intake is 4 hours, and the remainder
equals 20 hours. His after-the-fact odds of
exposure during the 2 hours before the in-
farction would be either infinity (table 2) or
zero (table 3). These two tables are equiva-
lent to the stratified tables for discordant
pairs in a matched-pair cohort study, in each

of which the rate ratios are either infinity or
zero.

Under the null hypothesis, table 3 is ex-
pected to occur five times more often than
table 2. Table 2 would add 20 to the numer-
ator of the rate ratio (£aiNOl/Th in Roth-

I

man's notation (10)) and zero to its denom-
inator (ZbiNu/T,). Five tables like table 3

would add five zeros to the numerator and
five fours to the denominator. Thus, under
the null hypothesis, the rate ratio would
equal 1.0. This is directly analogous to the
Mantel-Haenszel odds ratio for a matched-
pair case-control study, which is algebrai-
cally equivalent to the McNemar estimate—
the number of discordant pairs with exposed
cases divided by the number of discordant
pairs with nonexposed cases (10). Table 2
would add five, (NuNOi/T,), to the numera-
tor of the variance and 20, (a,yV0//7}), to its
denominator, while each table 3 would add
five to the numerator and four, (bjNu/T,),
to the denominator (9, 10).

Table 4 displays selected data from the
pilot phase of the Onset Study. For the one-
hour period after sexual activity, the rate
ratio is 22 (95 percent confidence interval
(CI) 3.2-160). For the one-hour period after
drinking coffee, the rate ratio is 1.8 (95
percent CI 0.35-9.8). The table is limited to
10 subjects for simplicity; after 300 inter-
views, the rate ratio for sexual activity within
2 hours of infarction was 2.6 (95 percent CI
0.92-7.1).

The effect-period

If an effect is transient, the risk interval
after an exposure may be divided into pe-
riods of normal background risk and the
period of excess or reduced risk due to the
exposure. If there is a delay before impact of
a point exposure, and/or there is "carry-
over"—a delay before recovery from the
impact—then the period of altered risk is
not exactly concurrent with the period of
exposure. We therefore define the effect-
period, the period of altered risk in a popu-
lation, to be the difference between the min-
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TABLE 4. Selected data from the pilot phase of the Onset Study, a case-crossover study of the determinants of myocardial Infarction (Ml) onset. Harvard
University, 1989

Subject

1
2
3
4
5
6

• 7

8
9

10

Last time
before Ml

5 minutes
90 minutes
2 days
3 days
7 days

11 days
14 days
21 days
35 days
20 years

Mantemaenszel
estimate of relative
risk

(95 percent Clf)

Sexual activity during past year

Usual
frequency

1/year
2/week
2/month
1/week
2/week
3/month
2/month
2/month
2/month
0/year

Concurrence odds*

Observed

1:0
0:1
0:1
0:1
0:1
01
0:1
0:1
0:1
0:1

Numerator.
Denominator:

Ratio:

Expected

1:8,765
104:8,662
24:8,742
52:8,714

104:8,662
36:8,730
24:8,742
24.8,742
24:8,742
0:8,766

8,765
392

= 22

(3.2-160)

Last time
before Ml

9 hours
20 minutes

3 hours
22 hours

6 hours
7 hours

12 hours
5 hours

<1 hour
24 hours

Coffee drinking during past year

Usual
frequency

2/day
1/day
3/month
5/day
8/day
2/month
2/day
2/day

10/day
1/day

Concurrence odds

Observed

0:1-
1:0
0:1
0:1
0:1
0:1
0:1
0:1
1:0
0:1

Numerator:
Denominator:

Ratio:

Expected

730:8,036
365:8,401

36:8,736
1,820:6,946
2,920:5,846

24:8,742
730:8,036
730:8,036

3,650:5,116
365:8,401

13,517
7,355

= 1.8

(0.35-9.8)

• The observed concurrence odds (1:0 or 0:1) are the odds that exposure was less than one hour before onset of myocardial Infarction. The expected concurrence odds are the odds that a
random event during the past year woukl have falen within one hour after an episode of exposure (assuming any two exposure episodes are more than one hour apart). The effect-period after the
hypothesized trigger is here assumed to be one hour long, with a minimum induction time of zero

t O, confidence Interval.
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148 Maclure

imum delay before impact and the maxi-
mum carry-over time.

One hypothesized mechanism of myocar-
dial infarction onset, for example, begins
with a short-lived triggering event (perhaps
a burst of anger) which causes a surge in
blood pressure and rupture of an atheroscle-
rotic plaque in the heart (2, 11). A delay
follows during which a clot grows. At the
point when the clot begins to cause ischemia
in the surrounding tissue, the subject enters
a period of excess risk of infarction. This
continues until the clot has dissolved, or the
ischemia is relieved by increased blood sup-
ply through neighboring arteries, or an in-
farction occurs. An individual at risk of
myocardial infarction may pass through
many periods of excess risk of varying sever-
ity and duration without infarcting. The in-
farction occurs at the confluence of addi-
tional stressors, such as increased platelet
aggregability, and decreased fibrinolysis
causing occlusive thrombosis, or vasocon-
striction causing complete occlusion of an
artery partially obstructed by plaque and
thrombosis. These and other physiologic fac-
tors are hypothesized to cause individual
induction times (the time from exposure'to
infarction) to range from a few minutes to
several days.

In a population, the times of myocardial
infarction onset after a triggering event
would be distributed as an epidemic curve
(figure 1). The shape of the curve would be
determined by the distribution of individual
induction times. Although the epidemic
curve would rise and fall smoothly in an
infinitely large population, its shape would
be less distinct in a study population of finite
size. It might therefore be described roughly
as a step-function: After the exposure (JC),
the background incidence rate prevails dur-
ing what is commonly called the induction
time (Ix). (This should be considered the
minimum induction time because it corre-
sponds to the minimum individual induc-
tion time in the population, not the average
individual induction time.) In figure 1, the
induction period is followed by an extremely
hazardous effect-period (duration = Ext)
when the incidence rate is highly elevated.

Next there is a moderately hazardous effect-
period (duration = Ex2) when the incidence
rate is slightly elevated. Finally, there follows
a return to the background incidence rate.
This step-function is illustrated by the bro-
ken line in figure 1.

Simplifying the epidemic curve to a step-
function is appropriate when the follow-up
interval is short. For example, if a man is
told he has twice the risk of an infarction on
the day after sex, he is unlikely to care
whether the increase in risk is concentrated
in the morning or the afternoon. The shape
of the epidemic curve is of little interest. For
the same reason, the "attack rate"—the cu-
mulative incidence—is of greater interest
when studying the epidemiology of acute
disease, whereas in chronic disease epide-
miology the incidence rate is preferred be-
cause the epidemic curve extends over many
years (12). Therefore, although the measure
of association in the case-crossover design is
computed as an average incidence rate ratio,
we will hereafter interpret it as estimating
the relative risk for a particular effect-period.

The height of each step in figure 1 clearly
depends on the width of each step, which is
chosen arbitrarily. Thus, the estimate of the
relative risk depends directly on the assumed
duration of the effect-period. In a re-analysis
of the pilot data in table 4, after assuming
an effect-period of 2 hours instead of one
hour, the relative risk of infarction after
drinking coffee went from 1.8 to 0.65, be-
cause the ratio of affected to unaffected pop-
ulation-time was halved. The relative risk of
infarction after sexual activity went from 22
to 30 despite the decrease in the ratio of
affected to unaffected population-time. This
was because subject 2, who had his infarc-
tion 90 minutes after sexual activity, was
now assigned an after-the-fact "concurrence
odds" of 1:0, instead of 0:1 (i.e., the odds of
occurrence of sexual activity within 2 hours
before the infarction.)

The actual duration of the effect-period
can be inferred empirically in the same way
the minimum induction period is normally
inferred in cancer epidemiology—by exam-
ining the change in magnitude of the relative
risk under different assumptions about du-
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The Case-Crossover Design 149

TIME

FIGURE 1. An epidemic curve (solid line) for acute-onset disease following a point exposure (x) with a transrent
effect. The step-function (dotted line) is a simplification of the curve showing an estimate of the population induction
time (/,) and the effect-period (£,), comprising a high-risk effect-period (£„,) and a moderate-risk effect-period (E^).

ration. Overestimation or underestimation
of the duration results in nondifferential ex-
posure misclassification, only diluting the
association. The best estimate of duration is
the one with minimal nondifferential mis-
classification, i.e., the one that maximizes
the relative risk estimate (13). In the Appen-
dix, the role of the assumed duration of the
effect-period and the induction period in the
estimation of the relative risk is presented
algebraically.

DISCUSSION

Threats to validity

Five factors have been identified as threats
to the validity of crossover studies: 1) carry-
over and period effects, 2) treatment se-
quencing and patient assignment, 3) cross-
over rules and timing, 4) dropouts and faulty
or ou lying data, and 5) inappropriate statis-
tical analyses for repeated outcomes (7). In
the case-crossover design, the first threat is
manifest as uncertainty about the duration
of the effect-period as discussed above. The
second and third threats are manifest as
within-individual confounding, because the
timing and frequency of crossover are not
under the investigator's control. The fourth
threat is manifest as selection or information
bias. The last threat does not apply to out-

comes that are rare, such as myocardial in-
farction.

Within-individual confounding

Use of subjects as their own controls elim-
inates confounding by subject characteristics
that remain constant, but not by those that
change over time. For example, a person
who normally drinks coffee after sexual ac-
tivity exhibits within-individual confound-
ing. This can be controlled by further strat-
ification, as long as the temporal correlation
among exposure episodes in the study pop-
ulation is not too high.

The data in table 4 illustrate the problem
and solution. If the effect-period is assumed
to be 2 hours, then the second subject's
infarction could be attributed either to sex-
ual activity or to coffee drinking. Thus, the
relative risk of 0.65 for coffee drinking
within 2 hours is potentially confounded by
sexual activity. Stratification of the data by
sexual activity within 2 hours would produce
one stratum containing subjects 1 and 2,
and another containing subjects 3-10. In
each stratum, the observed odds of coffee
drinking concurrent with infarction onset
would be unchanged for each subject (1:0 or
0:1). However, the expected odds of concur-
rence would change if episodes of sexual
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150 Maclure

activity were temporally associated, either
directly or inversely, with coffee drinking.

For example, about half of subject 2's
episodes of sexual activity were in the morn-
ing and half were in the evening; he drank
coffee only in the mornings. The expected
odds of concurrence of coffee drinking and
a random event, within any 2-hour period
after sexual activity, were therefore about
one-to-one, not 1:23 (i.e., 365:8,401). The
relative risk for coffee drinking in the 2 hours
after sexual activity, i.e., in the stratum con-
taining only subjects 1 and 2, is estimated
to be 5.5 (95 percent CI 0.5-56). When
many more than two patients are in this
stratum, and a stable relative risk is calcul-
able, it will be possible to quantify modifi-
cation of the coffee effect measure by sexual
activity. This will be done by contrasting the
relative risk with that found in the stratum
containing subjects who were sexually inac-
tive immediately before their infarctions.

This example shows how it is possible to
control within-individual confounding, and
to examine modification, provided there ex-
ist good data on the temporal association of
exposures both immediately before the in-
farction and in the subject's usual pattern of
daily life. In the Onset Study, temporal as-
sociation can be ascertained precisely during
the 26-hour period before the infarction, but
only imprecisely during preceding weeks.
Therefore, in the analysis, full control of
confounding and assessment of effect mod-
ification will be restricted by the need to
assume relatively short effect-periods (less
than 2 hours). To control several con-
founders simultaneously, conditional logis-
tic regression (14) will be used. For example,
the 26-hour period before the infarction will
be divided into one 2-hour case-interval and
12 2-hour control-intervals. The analysis
will then proceed similarly to the conditional
logistic analysis of a case-control study, with
one-to-12 matching. The point estimates are
expected to be unbiased but the usual con-
fidence intervals would be too narrow be-
cause of the temporal correlation of expo-
sures among the intervals (Greenland, per-
sonal communication, 1990).

Selection bias

The case-crossover design is immune to
one of the main causes of bias in case-control
studies—selection of controls that are unre-
presentative of the population that produced
the cases. Use of cases as their own self-
matched controls guarantees representative-
ness, so long as the matching is preserved in
the analysis. (If the matching is ignored, the
relative risk will be biased toward the null.)
For example, the best representative of the
subset of the general population who have
exactly the same risk profile as subject 2, is
subject 2 himself—as he was a day or two
before his infarction (assuming an effect
period of less than 12 hours).

Matching in a case-crossover study is a
special type of stratified sampling. In strati-
fied sampling, the population is first divided
into strata and then the sample is drawn so
it is representative within each stratum (but
not necessarily representative of the relative
frequency of different strata.) In the case-
crossover design, the population base is con-
sidered to be stratified in the extreme, so
there is only one individual per stratum. The
sample drawn from each stratum includes
"all subjects" (i.e., the one and only subject),
except for strata that lack any occurrence of
disease. Strata with no cases need not be
sampled because they contribute no infor-
mation to a matched analysis. They each are
equivalent to the uninformative, caseless
concordant pairs in a matched cohort study.

Although control-selection bias is elimi-
nated, biased case-selection is still possible.
Some patients' recent exposures may influ-
ence their willingness to participate (e.g.,
patients with cocaine-induced myocardial
infarction may decline to be interviewed).
However, transient factors can influence se-
lection in fewer ways than constant factors.
For example, regular coffee drinkers may
participate less than occasional coffee drink-
ers, but, among occasional coffee drinkers,
it is unlikely that participation will be influ-
enced by whether or not they happened to
drink coffee on the day of the infarction.
Therefore, self-selection bias by cases should
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The Case-Crossover Design 151

be less of a problem in a case-crossover study
than in a traditional case-control study.

The possibility that interviewers will make
more of an effort to interview patients con-
sistent with hypotheses can be reduced by
standardized procedures and training. For
example, in the Onset Study, information
on timing of pain onset (which influences
the decision about patient eligibility) is col-
lected before exposure information.

Information bias

In most epidemiologic studies, exposure
information is collected as uniformly as pos-
sible from cases and noncases to avoid dif-
ferential information bias. In a case-cross-
over study, however, questions about expo-
sure during case and control intervals may
differ in wording and require different meth-
ods of memory recall. For example, a spu-
rious association could occur due to system-
atic error in reporting usual exposure fre-
quency (the "control" information) com-
pared with exposure during the short inter-
val before the outcome (the "case" infor-
mation). The direction and magnitude of
such a bias would vary among exposures.
For example, evidence suggests that usual
frequency of sexual activity is slightly ov-
erreported (15) and food frequency ques-
tionnaires tend to give higher frequencies of
specific foods than extrapolation of 24-hour
recall (16). By contrast, the usual frequencies
of unintentional and nonhabitual actions,
such as bursts of anger or occasional heavy
lifting, are likely to be underreported due to
fading memory. There may also be exagger-
ation or denial of exposures on the day of
the infarction.

The possibility, even the existence, of in-
formation bias does not eliminate the utility
of the case-crossover design. Some exposures
may be quite resistant to biased recall: for
example, usual frequency of smoking or cof-
fee drinking during the past month. For
other exposures, the direction and magni-
tude of the bias may be assessed in a vali-
dation study, and sometimes in the case-
crossover study itself. In the Onset Study,

for example, we found the mean of reported
"usual" frequency of sexual activity was
slightly higher than the mean actual fre-
quency during the 2 weeks before the infarc-
tion (excluding the final 24 hours). This is
consistent with the cited validation study
(15) and suggests that the relative risk of 2.6
is not due to information bias.

Generalizability

The case-crossover design is a scientific
way to ask and answer the question clini-
cians so often ask patients: "Were you doing
anything unusual just before the episode?"
It is therefore generalizable, in principle, to
all acute-onset outcomes hypothesized to be
caused by brief exposures with transient ef-
fects.

In practice, its utility relative to the tradi-
tional case-control design will depend on the
relative susceptibilities of each design to se-
lection bias and information bias, which will
depend on the particular exposures and dis-
eases of interest. The case-crossover design
may prove most useful in specialized clinical
settings with unusual referral patterns, lim-
ited patient mixes, and no resources for col-
lecting data from nonpatient controls.
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APPENDIX

The Role of Assumed Durations of the Effect-Period and the Induction Period in
Estimation of the Relative Risk

For rare exposures of short duration, with effect-periods of short duration, the proportion
of the time spent by each subject 0) in a state of excess or reduced risk due to exposure (x)
may be estimated simply by multiplying the number of episodes of exposure (n) by the
assumed duration of the effect-period (Ex) and dividing by the duration between the time of
the outcome event (To) and the start of the time window (Txtv) in which exposure was
assessed (nEx/(T0 — TxW)). However, if episodes of an exposure are frequent and its effect-
period is long, then overlap among effect-periods must be discounted. The following algebra
may be used to discount overlap. (If the effect of exposure is hypothesized to compound
when effect-periods overlap, then discounting should still be done, and the additional effect
due to overlap should be evaluated as if it were due to a separate exposure.)

Consider n episodes of exposure x, each having duration D^j starting at time Txnj in the
time window (T0J — TxWj)- For point exposures (with Dxnj <*: Ex), the amount of affected
time between two consecutive exposures is either Ex or the lag time between the exposures
(TMn-lh - Txnj), whichever is shorter. For continuous exposures, it is either (Ex + D,^) or
(Txin-,y - Txnj), whichever is shorter. Therefore, the proportion of time (PXJ) that the yth
subject was in a state of altered risk due to exposure x is

Pxj='Z Dx
ni,

- Txnj)]/(T0J - TxWj).

If the minimum individual induction period in the population is hypothesized to have
duration Ix, then Ix would be added to Txni and TMn-iy but would cancel in the subtraction.

Appendix figure 1 illustrates the notation. It is a timeline for subject j (they subscripts are
omitted) who had two episodes of exposure (n = 2). The first episode (called x2 because it is
second when counted backwards from the outcome time To) is a point exposure with

TIME: TH

EXPOSURE:

DELAY:

EFFECT:

Txi
I

Til TO

xxxxxxxx
I-Dxl—•

H i - H x -

I (Ex + Dxl) •

APPENDIX FIGURE 1. A hypothetical timeline of a subject from whom exposure information was available in the
window from time Tw to trie outcome event at time To. The subject was exposed twice: a point-exposure at the
time Ta and an interval-exposure beginning at time T,, and ending after the duration D,,. The effect of each exposure
episode (increase tn risk of outcome) begins after the induction time /, and lasts for the duration of the effect-period,
E, for the point exposure and E, + D,, for the interval exposure.

 at Stanford M
edical C

enter on June 25, 2012
http://aje.oxfordjournals.org/

D
ow

nloaded from
 

http://aje.oxfordjournals.org/


The Case-Crossover Design 153

duration Dx2 = 0. The other episode, xu has duration Dxl. The induction time Ix and the
effect-period Ex follow consecutively after x2. The next effect-period however is longer; it
equals Ex + Dxl. It begins at time Txl + Ix. The proportion of time the subject is affected by
exposure, Px, is (2EX + Dxl)/(T0 - Tw).

Cases are classified not as "exposed" or "unexposed," but as "concurrent" or "nonconcur-
rent" with the assumed effect-period. The numbers of concurrent cases (cxj) and nonconcur-
rent cases (I — cv) in theyth stratum (which equal 0 and I, or I and 0) are a function of the
assumed durations of the effect-period (Ex) after exposure x, and the lag time (TOj — TxtJ —
DxlJ) between the outcome event (TOj) and the end of the last episode of exposure (TxiJ +
Dx\j), where TxlJ is the start of the last exposure episode and DxtJ is its duration. Thus,

Cxj = integer \\EX - m\n[Ex, (T0J - Txlj - DxXj - 0.5)]}/(£, - (TOj - Txlj - DxlJ))}.

A more complicated algorithm is required if a minimum induction period Ix is hypothe-
sized, because a case that occurs during the induction period of the last exposure, yet is
concurrent with the effect-period of the second-to-last exposure, should be considered a
concurrent case.

Each subject contributes £*(1 — /\,) to the numerator and (1 — c^)Pv to the denominator
of the Mantel-Haenszel estimator (RRMH). Each subject contributes both these terms to the
denominator of the estimator of the variance of the log of RRMH, and PXJ(l - P^) to the
numerator. The equation for the variance (9, 10) in this notation is:

2
Var[ln(RRMH)] =

[2
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