Search Results for: weight

2015 QS Visualization Gallery: Part 3

We’re excited to share another round of personal data visualizations from our QS community. Below you’ll find another five visualizations of different types of personal data. Make sure to check out Part 1 and Part 2 as well!

eddie-flights Name: Edward Dench
Description: All recorded flights I’ve taken.
Tools: Manual entry into openflights.org (there is an interface using TripIt though).

 

QS Visualization Name: Siva Raj
Description: After 6 months of regular exercise failed to improve my fitness and blood pressure levels, I switched to training above my endurance limit (anaerobic threshold). This was higher intensity but half the cycling time, yet my fitness and blood pressure improved within weeks.
Tools:Revvo – tracking fitness and intensity of workout; Withings – weight; iHealth BP Monitor – BP. Visualization created by overlaying Revvo screenshot with other information in photoshop.

 

Screenshot 2015-06-05 08.07.14 Name: Kurt Spindler
Description: Grafana is a common tool in the Software community to create beautiful dashboards to visualize server health (network, requests, workers, cpu, etc.) and therefore more easily diagnose problems. I created a custom iOS app that allows me to publish metrics to the same backend as Grafana, giving me Grafana dashboards for my personal health.
Tools:Custom iOS app, Grafana, Graphite
RyanODonnell_PagesReadPerMonthName: Ryan O’Donnell
Description: This semi-logarithmic graph is called the Standard Celeration Chart (SCC). It’s beauty is that anything a human does can be placed on this chart (i.e., standardized display). This also allows for cool metrics to be developed that lend well to predictability. I charted the number of pages that I read for my field of study, Behavior Analysis. I wrote a blog post on the display to speak some to the reading requirements suggested by professionals in the field. There were many variables that led to variations in reading rate, but the point of this work was to try and establish a steady reading repertoire. A recent probe in May of 2015 was at 2800 pages read. Essentially, I learned how to incorporate reading behavior analytic material almost daily in my life, which indirectly aids in the effectiveness I have as a practitioner and supervisor.
Tools: Standard Celeration Chart and paper-based data collection system (pages read each day on a sheet of paper).

 

Graph4_red_black Name: Francois-Joseph Lapointe
Description: This *Microbial Selfie* depicts the gene similarity network among various families of bacteria sampled from my gut microbiome (red) and oral microbiome (black). Two bacteria are connected in the network when their gene sequences are more similar than a fixed threshold (80%). The different clusters thus identify bacterial families restricted to a single body site (red or black) versus those inhabiting multiple body sites (red and black).
Tools: In order to generate this data visualization, samples of my oral and gut microbiome have been sequenced on a MiSeq platform by means of 16S rRNA targeted amplicon sequencing, and the resulting data have been analyzed using QIIME, an open-source bioinformatics pipeline for performing microbiome analysis. The gene similarity network was produced with the open graph viz platform Gephi, using the Fruchterman–Reingold algorithm.

Stay tuned here for more QS Gallery visualizations in the coming weeks. If you’ve learned something that you are willing to share from seeing your own data in a chart or a graph, please send it along. We’d love to see more!

Posted in QS Gallery, QS15 | Tagged , , , , , | Leave a comment

Meetups This Week

There are three very interesting QS meetups occurring this week. Chicago’s event will be fitness focused, with talks on what it’s like to work out with a weight system that changes it’s resistance in real-time based on your performance and effort and learning from DXA body composition data. Shanghai will have a researcher talk from Preston Estep on using genetic data to improve health.

Ashland will have an amazing sharing of progress on current n=1 projects. Projects include exploring deep sleep with Beddit, looking at the difference between breath-based and blood-based ketone readings, and testing the effects of berberine on postprandial glucose rise. The last one is interesting is because it is placebo-controlled and double-blind, which can be difficult to pull off. I would love to hear more about his experiment design.

To see when the next meetup in your area is, check the full list of the over 100 QS meetup groups in the right sidebar. Don’t see one near you? Why not start your own!

Monday, July 20
Chicago, Illinois

Tuesday, July 21
Shanghai, China

Sunday, July 26
Ashland, Oregon

Photo from QS Montreal’s meetup last week

What a beautiful venue. If you organize a QS meetup, please post pictures of your event to the Meetup website. We love seeing them.

QSMontrealJuly
Photo credit: Maxime Chabot

Posted in Meetups | Tagged , | Leave a comment

2015 QS Visualization Gallery: Part 1

In 2013, just prior to our our Quantified Self Global Conference, we asked conference attendees to send us examples of their own personal data visualizations that they found especially meaningful. We were blown away by what everyone shared with us. From visualizations of blood glucose readings to GPS traces and plots of time tracking and productivity, the range of visualizations was astounding (you can view some of those visualization by searching the blog for the QS Gallery tag).

This year, we sent out the request once again to attendees of our QS15 Conference and Expo. Once again, our inbox immediately started to fill up with images, graphs, and visualizations describing the tracking experiences of our amazing community. Today, we’re excited to start sharing those visualizations with you here.

Beau Name: Beau Gunderson
Description: A homemade polysomnogram with a Zephyr Bioharness as the only data
source.
Tools: IPython, matplotlib, pandas, seaborn, numpy.

 

Seasonal compliance Name: Shannon Conners
Description: This graph shows what initially looks like an interesting trend in my activity data. I seem to be less active during the summer months, but when I pair my activity and wear time for the BodyMedia FIT armband I used to generate the data, the real reason for the drop becomes clear. I’m wearing the armband less in the summer months to avoid upper arm strap tan! I know my own device usage patterns, so when I graphed the two measures together, it was immediately clear to me what was going on. To me, this is a simple example that illustrates one of the big challenges of looking at activity monitor data in the absence of data about device usage. Usage patterns can and do change over time and the reasons for these changes may not be as obvious as the change of the seasons. For example, something as simple as breaking the clip-on case you use to carry the phone that counts your steps could greatly impact how often you carry it, and therefore the quality of the data you collect. Some monitors don’t even record a usage metric with which to compare activity data. I like this graph as a reminder that interesting patterns may in fact be data collection or data quality issues in disguise.
Tools: BodyMedia FIT Core BW, JMP

 

HeadsUp Name:: David Korsunsky
Description: Mashing data from my favorite wearables, my medical records as well as data I track manually into a custom dashboard.
Tools: Heads Up Health is software that can enable anyone to create their own custom configurations.

 

4fcfb36b86f2241013000002_graph Name:: Daniel Reeves
Description: Number of (read) messages in my inbox over time.
Tools: Beeminder’s GmailZero.com

 

QSHRVSeasonalTrend Name:: Jo Beth Dow
Description: Trend analysis of my HRV over a 2.5 year period. Displays a stunning seasonal trend.
Tools: iPhone running SweetBeatLife app to measure clinical grade HRV on a daily basis.

Stay tuned here for more QS Gallery visualizations in the coming weeks. If you’ve learned something that you are willing to share from seeing your own data in a chart or a graph, please send it along. We’d love to see more!

Posted in QS Gallery | Tagged , , , , , | Leave a comment

Measuring Your Metabolism: Breezing at QS15

One June 18-20 we’re hosting ourQS15 Conference and Expo and we’re delighted that so many great toolmakers will be joining us to show off their devices, apps, and services. We’ve  asked each of our toolmakers to give us a bit more background information about their company and what they’re excited about. If you’d like to meet these innovative companies and the amazing people behind them then make sure to register today!

Breezing Logo

1. How do you describe Breezing?
Breezing is a mobile metabolic tracker that affordably, easily, and accurately measures resting metabolic rate through indirect calorimetry, a gold-standard method for weight management. The tracker syncs wirelessly with a mobile app, so users can track metabolic rate anytime, anywhere. It tells them the calorie intake and exercise plan they need to maintain, lose, or gain weight based on their unique resting metabolic rate.

2. What’s the backstory? How did you get started?
In 2012, we had the idea to miniaturize metabolic carts for assessment of resting metabolic rate. A researcher performing a human physical performance study at Arizona State University showed us one of the instruments at her lab. She was complaining about the cost ($35,000) and size (old desktop PC + printer), as well as the difficulty of operating it. The instrument was preventing her from moving on to more exciting studies for field-testing and free-living conditions. We decided to take on the challenge, and from there we developed the Breezing metabolic tracker.

In 2013, we launched an Indiegogo campaign to bring the Breezing metabolic tracker to early adopters. The campaign successfully raised funds to manufacture the first batch, and we distributed ~165 Breezing trackers and ~3,000 metabolic measurements around the world. Thanks to our Indiegogo users, we were able to improve the Breezing user interface, which later allowed us to validate the tracker with more than 300 measurements, using the Gold Standard method for indirect calorimetry. Today, the device has accuracy comparable to metabolic carts in the market at a fraction of the traditional cost, time, and size.

3. What impact has it had? What have you heard from users?
We have helped users understand their metabolic rate, the changes in their bodies, and their calorie intake needs. Our user base includes individuals who are clinically overweight/obese, those who have metabolic problems or hypothyroidism, and most recently, pregnant women. We’ve also helped people with fitness needs, specifically sports training and athletic activity.

In the meantime, we’ve promoted education efforts to demonstrate the need for measuring resting metabolic rate measurement in order to fully manage calorie intake balance and weight.

Our users have shared with us their success stories, and with their permission, we’ve featured some of these stories in our videos and blog. What’s most satisfying for us is knowing that we’ve finally brought metabolic rate measurements to the masses and that we’ve really helped people.

4. What are you doing next? How do you see it evolving?
We believe in creating better access to metabolic rate tracking, so everyone can measure and track their metabolic rate and caloric needs as easily as if they were measuring their blood pressure or their glucose levels at home.

5. How can people find out more about you?
Visit www.breezing.com , or stop by our booth at the Quantified Self Expo. We look forward to meeting you. We’d be happy to test your resting metabolic rate! Just be ready and prepared. Here the measurement conditions you need to meet.

Posted in Conference, QS15 | Tagged , , , | Leave a comment

Announcing the QS15 Conference Program

It’s finally here.

Next Thursday we’re welcoming over 450 self-trackers, inventors, artists, toolmakers, researchers, and scientists to the 2015 Quantified Self Conference. Over two days were hosting over 130 different talks, sessions, and demos that showcase the ingenuity and expertise of our community. We create our program from the ground up, soliciting ideas from each individual that registers, and this year we’re excited to have over 100 different attendees contributing to the program. It’s going to be great.

View and download the QS15 Program here.

Here’s just a few examples of the amazing Show&Tell talks, Breakout Discussions, Lunchtime Ignites, and Office Hours we have planned.

Show&Tell Talks
THREE YEARS OF LOGGING MY INBOX COUNT – Mark Wilson
The number of emails in my inbox correlates very well with my stress level. After passively tracking this number for three years, I explore what this and other data says about how I’ve controlled (and been controlled by) this stream of angst.

TRANSCRANIAL DIRECT CURRENT STIMULATION (TDCS) TO MANAGE MY STRESS. – JD Leadam
Transcranial Direct Current Stimulation (tDCS) is an emerging “at-home” method for influencing the brain using very low voltage electrical current applied to the scalp. I’ll show how I’ve used tDCS in conjunction with self tracking methods to assist in controlling my stress.

TIME AND INTENTION TRACKING – Allan Johnson
Does tracking my intentions affect how I spend my time? Using an app for self-reporting, I compared how I spent my time when tracking both my intentions and time.

CAN’T YOU SEE I WAS FALLING IN LOVE? – Shelly Jang
As I struggle with the iron discipline required for keeping consistent logs, I am often forced to look into what I call passively collected data sets. I explored whether I can excavate data artifacts from past and correlate them with known life events. Using Google hangout conversations, I ask “can’t you see I was falling in love?”

28 YEARS OF TRACKING: BUT WHAT HAVE I LEARNED? – Nan Shellabarger
I’ve got lots of data – weight, activity, sleep, and health. I find as I keep reviewing it, visualizing it in different ways, always looking for patterms, there are still things to be learned.

USING HEART RATE VARIABILITY TO ANALYZE STRESS IN CONVERSATION – Paul LaFontaine
I measured stress during conversations using off-the-shelf technology. The results were unexpected and at times funny; with some lessons for me about my “fight or flight” response.

IN PRAISE OF BAD DATA COLLECTION DURING EARLY FATHERHOOD – Thomas Richardson
Sleeplessness and the pressures of birth and postpartum life drove me to to collect information and quickly discard methods that appeared wasteful. Looking back, did the kinds of information I collected tell me more than the data itself?

RE-LIVING MY LIFE WITH MOOD TRACKING. – Kouris Kalliagas
I used an email-based mood tracking service for several months. I never used the data in any way till I noticed something which triggered me to look back at my mood tracking data and search for patterns.

Breakout Discussions
TRACKING BABIES! – Morgan Friedman
Like many parents, I tracked my newborns. By comparing my records with those of other parents using the same app I learned some interesting things about my son. I’m curious to see how they play out as he grows up.

HACKING OUR MICROBIOME – Alexandra Carmichael, Richard Sprague
Today it’s possible to get data on the microbes that live in our gut using personal genomics. We’ll lead a breakout workshop on understanding and hacking our microbiome.

THE QUANTIFIED SELF AT WORK – Joost Plattel, Phoebe Moore
More than 13 million wearable fitness tracking devices will be incorporated into employee wellbeing and wellness programs 2014-19. We will discuss how self-tracking and monitoring are used in working spaces whether traditional or freelance. What are the advantages/disadvantages of quantifying the self at work?

AGGREGATING MULTIPLE DATA SOURCES FOR SELF-KNOWLEDGE – Anne Wright, Randy Sargent
We’ve been working on aggregating, visualizing, and analyzing data for personal benefit, using multiple self-tracking sources. We’ll share our methods, and invite you to comment, ask questions, or share your own.

SEX, SEXUAL HEALTH & QUANTIFIED SELF – Ilyse Magy
Cycles, lovers, positions, kinks, symptoms, stats, safety: how can tracking sexual activity benefit our experiences? We’ll talk about what tools you’re using but mostly dream up the tools we would want to use. This is a sex-positive, feminist, inclusive space open to all gender identities.

QSXX: WOMEN-SPECIFIC QS CONVERSATIONS – Amelia Greenhall, Maggie Delano
Women-centered QS meetups in SF, Boston, and NYC have created space for important conversations. Nicknamed “QSXX” (though not all women have two X chromosomes), this breakout session is specifically for people who identify as a woman to talk about QS experiences.

THINKING THROUGH DATA ACCESS AND PRIVACY – Kendra Albert
How do you view third-party access to your data: either by governments, advertisers, or corporations? Are certain types of data okay to share but others make us feel icky? We’ll focus not just on privacy “in general” but on specific types of circumstances in which data might be shared, trying to draw lines between types of data and uses.

WHAT IS THE SELF IN QUANTIFIED SELF? – Natasha Schull
How do digital tracking technologies engender new modes of introspection, understanding, and self-governance?

Lunchtime Ignite Talks
THE DIGITAL HEALTH COACH – Glennis Coursey
You might have everything you need to be healthy – wearables, health apps, a wireless scale. But without the motivation and support to actually get healthy, change can be hard. That’s where digital health coaches come in. Glennis shares what she’s learned building digital health coaching programs at Sessions and MyFitnessPal.

FIGHTING PARKINSON’S DISEASE WITH DATA: ROUND THREE – Kevin Krejci
Round three in the proverbial boxing ring between Kevin and Mr. Parkinson, as he updates us on his progress tracking multiples symptoms and therapies with multiple gadgets to slow the progression of this progressive neurodegenerative disorder. Sleep and biome discoveries highlighted in this round…

A QUEST FOR HIGH FIDELITY ACTIVITY TRACKING – Jamie Williams
Jamie will show us how he is building tools to capture a timeline of his daily activities and explore his habits through data visualization.

AM I BEING INTENTIONAL? – Beau Gunderson
The challenges of tracking (and defining) intentionality.

WHY I WEIGHED MY WHISKERS – Jon Cousins
When I was diagnosed with bipolar affective disorder, I noticed that my libido seemed to, er, rise and fall as my mood changed. Could this be due to a variation in testosterone? And might the rate of growth of my beard be one way of measuring this? I borrowed accurate laboratory scales and started daily mood tracking and whisker-weighing.

YOU HAVE NO IDEA WHAT YOU’RE DOING – Cara Mae Cirignano
Whatify allows you to collect data in a mindful way in pursuit of a specific question, instead of just gathering reams of data and then rooting around for insights. We use the most powerful tool of professional researchers, randomized experimentation, to help you easily isolate and understand one decision at a time. No experience whatsoever required.

FRICTIONLESS TRACKING WITH BEEMINDER AUTODATA – Danny Reeves
Beeminder is Quantified Self plus commitment contracts: data-oriented behavior change. But mustering the discipline to enter data can be a catch 22. We’ll discuss the myriad ways you can automatically collect data about yourself with Beeminder, highlighting our partnerships with other QS mainstays like RescueTime, Fitbit, Withings, Zapier, and IFTTT.

Office Hours
SHERBIT – Alexander Senemar
Your apps and devices are constantly generating data about you. Sherbit puts it all together so you can easily understand and analyze your information, keeping the integrated day firmly under your own control.

REVVO – Siva Raj
Revvo is a smart exercise bike. Unlike apps and wearables that track activity (steps, calories, distance etc.) Revvo actually tracks your fitness – and helps you train smart – so you see quick results.

EXPLORING TOMORROW – Ryan O’Donnell
Exploring Tomorrow focuses on teaching students how to quantify their daily interactions and goals through the use of self-management tools developed through the science of behavior to align each student’s values with their daily actions.

HEADS UP HEALTH – David Korsunsky
Heads Up Health helps consumers combine medical, wearable and self-collected data with personalized analytics and insights.

SIREN – Ran Ma
At Siren we believe that prevention is the best medicine – we combine smart textiles and user-centric software to give people actionable data in order to make informed decisions about their health. The first product that we are working on is a sensor embedded sock that tracks temperature, combined with a smart wearable anklet tracking motion that connects to a smartphone via BLE.

PERSONAL DATA BANK – Arkadiusz Stopczynski
Personal Data Bank with SafeAnswers allows users to collect, store, and give fine-grained access to their data all while protecting their privacy. With this infrastructure available as a service, developers can create applications powered by personal data in an easy and scalable way.

PROACTIVE LIFE – Daniel Gartenberg
I work on a variety of projects to track and improve sleep. This includes smart phone sleep trackers, providing different types of auditory stimulation during sleep, and figuring out alertness using simple reaction time tasks.

FITABASE – Aaron Coleman
My company helps researchers use Fitbit data to make discoveries in public health and behavioral science. Stop by and I’ll show you how.

That’s just a sample of the over 130 different sessions at the conference. We’re nearly sold out so register today!

Posted in Conference, QS15 | Tagged , , | Leave a comment

Get Insights From Your Data: Addapp at QS15

Next week we’re hosting our QS15 Conference and Expo and we’re delighted that so many great toolmakers will be joining us to show off their devices, apps, and services. We’ve  asked each of our toolmakers to give us a bit more background information about their company and what they’re excited about. If you’d like to meet these innovative companies and the amazing people behind them then make sure to register today!

Addapp

1. How do you describe Addapp?
Addapp is a free iPhone app that provides personalized insights into your well-being from data you already produce with wearable devices & apps. For example, Addapp can detect a relationship between your protein intake and your weight, as well as between your deep sleep and your cycling.

Addapp has made a conscious decision to focus on providing awesome insights, but it also expands on them by giving users more background info and suggestions but also calls to actions.

2. What’s the backstory? How did you get started?
Around two years ago, CEO Kouris Kalligas started using all kinds of fitness apps/devices and put all of his data into one Excel document. He wanted to understand any important correlations or other relationship types within his data. He ended up with such a big spreadsheet filled with findings and he quickly realized keeping up with it was not sustainable. He got involved in the Quantified Self community and joined the QS conference in Amsterdam. It took him only one day to realize that he was not alone in this problem. This is why he started Addapp: to make sense of the data produced by wearable devices and apps people use to track their well-being (running, cycling, sleep, biometrics, etc.).

3. What impact has it had? What have you heard from users?
Addapp is at early growth stage with thousands of signups and active users. We are learning every day what users want and optimizing insights for it. They are asking for smarter and more engaging insights, and that’s exactly what our team is doing in the background. In the fall of 2015, we plan to make an even bigger splash in the market with new functionalities, which we are currently defining based on customer research.

4. How can people find out more about you?
If you want to know more about Addapp, browse to Addapp.io, find it for free in the App Store, tweet us @addappio or mail us at support@addapp.io. We guarantee everyone gets a reply!

Posted in Conference, QS15 | Tagged , , , | Leave a comment

Unlocking the Answers in Your Blood

ForgetNormalChallenge

 

Last week, together with our friends from InsideTracker, we ran a short contest to see what kind of experiments and tracking projects could be supported by having access to InsideTracker’s Ultimate Panel biomarker tests. And wow, the response was amazing.

We received so many great entries from the community. From individuals wanting to understand how their training and activity affect their hormones, to people just wanting help figuring out how chronic conditions are affecting them. It was hard to choose just two winners, so thanks to the generosity of the team over at InsideTracker we were able to choose three!

Congratulations to Dana Greenfield, Mary Eggers, and Felipe Gerhard! We’ll be doing more in-depth follow-ups with each of the winners here on the blog soon, but until then here are the great experiments and projects they proposed:

  • Dana Greenfield - “I want to learn if certain foods I eat –such as spearmint tea, or omega-3 supplements–have actual effects on free testosterone or other altered biomarkers associated with my Polycystic Ovarian Syndrome diagnosis…”
  • Mary Eggers - “I’ve been a triathlete for 20 years. Multiple Ironman races and and high volumes of training have left me with anemia, high levels of cortisol and some other issues. In August after age group nationals I’m going to switch my focus to swimming, with the goal of competing at USMS nationals. When I return, what will happen then? I am also switching from a paleo based diet to plant powered for this journey. What will that effect? This would be a fantastic chance to properly measure change…”
  • Felipe Gerhard - “I want to study how a diet based only on Soylent will affect my overall health, hormones, and energy levels. How will I do it? I will switch to an almost exclusive Soylent diet for at least two months with one cheat day per week (~85% caloric intake from Soylent). One InsideTracker Ultimate Panel will be performed in the beginning to establish baseline value and a second one towards the end, 6-8 weeks into the diet. During the experiment, I will supplement with creatine, vitamin D, and any additional supplements recommended by InsideTracker after the first blood panel. I will continue ongoing tracking of basic QS stats such as body weight, body fat percentage, Fitbit data, daily and weekly habits, and sleep. I will start to track compliance with the diet and my energy levels through a subjective rating scale. What will I learn? Changing to Soylent as an almost exclusive source of food is a radical change in diet (#ForgetNormal). Though there are anecdotal long-term reports of people switching to Soylent, these reports are typically not accompanied with such an extensive blood panel that is offered by InsideTracker. In addition, there have been discussions around potential negative effects on hormonal levels. Therefore, tests for Testosterone, DHEAS, Cortisol, and other hormones included in the Ultimate Panel will be a crucial component of this experiment. I am personally interested in improving my sleep and energy levels and hope to see a correlation not just with the change of diet, but potentially also with the range of biomarkers that InsideTracker provides…”

Want to learn more about InsideTracker and what you can learn from blood and biomarker tests? Come see them in person at our QS15 Expo! Tickets are now on sale and readers of the blog get a special $10 discount! Register today!

Posted in Conference, QS15 | Tagged , , , , | Leave a comment

Welcome to our QS15 Friends of QS

In the lead up to every QS Conference we’ve put on there is always interest from pioneering people, organizations, and companies who are looking for ways to get involved. In 2013 we created our “Friends of QS” program as a lightweight way to get involved with the QS community at our events. We’re so happy to welcome back a few old friends and include a great group of new friends at our upcoming QS15 Conference & Expo.

Our Friends of QS include:

Beeminder is a goal-tracking tool with teeth. Connect a QS gadget or app (Fitbit, RescueTime, etc) and Beeminder plots your progress towards your goal on a Yellow Brick Road. Stay on track and Beeminder is free. Go off the road and you (literally) pay the price.
BrainStimulator_friends The Brain Stimulator creates electronic cognitive enhancement devices which use Transcranial Direct Current Stimulation (tDCS) to influence the natural electrical impulses of the brain, often producing positive effects. Studies have shown that tDCS has promise to safely increase focus, short-term and longer-term memory, language learning abilities, mathematical skills, motor control, and induce “flow-state” learning capabilities.
bulletproof_friends Bulletproof is an industry leader in coffee, nutrition, supplements and technology developed to help people perform better, think faster, and live up to their fullest potential using a blend of time-tested knowledge and cutting-edge technology.
Fluxtream is an open-source non-profit personal data visualization framework to help you make sense of your life and compare hypotheses about what affects your well-being. Using Fluxtream, you can bring together and explore physiological, contextual, and observational data from many devices and apps on a common timeline.
Gordon Bell is on a quest to understand how to store everything in his life in cyberspace. Since 1998, he has been working on the MyLifeBits project with Jim Gemmell, founder of Trov, a company dedicated to helping people track their stuff. After QS2012, Gordon became a “trackee” of health data using CMU’s Bodytrack holding BodyMedia, Heartrate and other data.
HeadsUpHealth_friends At HeadsUpHealth, our goal is to make it easy for anyone to take control of their health information and use data to make better decisions. We integrate medical records, wearable data, self-tracking and legacy data (pdf, .csv etc.) into a personal repository. We then provide the tools needed to use this information for health optimization.
The Quantified Self Institute is an experimental collaboration between the Hanze University of Applied Sciences (Groningen, the Netherlands) and QS Labs to bridge the gap between science and the QS community. It is a network of QS users/makers, researchers, students, companies and other institutions that support the mission to encourage a healthy lifestyle through technology, science and fun.
Rock Health s powering the future of the digital health ecosystem, bringing together the brightest minds across disciplines to build better solutions. Rock Health funds and supports startups building the next generation of technologies transforming healthcare.

If you’re interested in supporting our work and interacting with the amazing attendees at the QS15 Conference & Expo we invite you to join our Friends of QS. The easiest way to get involved is  to register for QS15. On the registration menu, select “Friends of QS.” By paying a small premium over the normal ticket price, you support our program and also receive a range of benefits designed to support the toolmakers in our community.

Want to meet the great people behind the companies and institutions you see above? Register today for the QS15 Conference & Expo!

Posted in Conference, QS15 | Tagged , , , , , , , , , | Leave a comment

What We Are Reading

WWAR_Header

A few notes up top here. First, if you haven’t yet checked it out please give our new QS Radio podcast a listen. We’d love to hear what you think!

Second, our QS15 Conference & Exposition is fast approaching. It’s going to be a wonderful and jam-packed three days of talks, sessions, and amazing demos. Our Early Bird tickets are almost gone. Register before Monday (May 11th) to get $200 off the regular price!

Now, on to the links!

Articles

Data (v.) by Jer Thorp. So many people in my network were sharing this over the last few days I had to give it a read, and I’m happy I did. Jer Thorp makes a succinct argument for turning the word “data” from a amorphous blob of a noun into a verb.

By embracing the new verbal form of data, we might better understand its potential for action, and in turn move beyond our own prescribed role as the objects in data sentences.

How Not to Drown in Numbers by Alex Peysakhovich and Seth Stephens-Davidowitz. In this great article, two data scientists make the case for “small data” – the surveys and rich contextual information from open-ended questions.

We are optimists about the potential of data to improve human lives. But the world is incredibly complicated. No one data set, no matter how big, is going to tell us exactly what we need. The new mountains of blunt data sets make human creativity, judgment, intuition and expertise more valuable, not less.

Data, Data, Everywhere, but Who Gets to Interpret It? by Dawn Nafus. We’ve been collaborating with Dawn and her team at Intel for quite a while, and we’ve learned a lot. Reading this wonderful piece lead to even more learning. Dawn uses this article to describe not only the community of individuals who track, but also why, and what happens when it comes time to interpret the data. (You can explore DataSense, the tool Dawn and her team have been working on, here: makesenseofdata.com)

Applying Design Thinking to Protect Research Subjects by Lori Melichar. Lori is a director at the Robert Wood Johnson Foundation and recently did some work related to how institutional review boards (IRBs) function. For those who don’t know, IRBs are the groups/committee that evaluate the benefits and harms of human subjects research. Their process hasn’t changed much in the few decades, but the face of research has. In this short post Lori describes the ideas that came from thinking about how we might re-design the current system.

ResearchKit and the Changing Face of Human Subjects Protections by Avery Avrakotos. As mentioned above, research is changing, and one of the big changes we’re currently seeing is the use of mobile systems like Apple’s ResearchKit. It’s not all sunshine and roses though, the popularity and excitement that goes along with these new methods also means we have to think hard about we protect those who choose to participate.

Show&Tell

I measured my brain waves and task performance on caffeine- here’s what I found by John Fawkes. John was interested in how much caffeine he should be ingesting to help with his mental and physical performance. In this post he details some of what did, how he tested himself, and what he learned about how caffeine, and how much of it, affects different aspects of his life.

The Quantified Self & Diabetes by Tom Higham. Tom was diagnosed with diabetes in the late 80s. In this short post he details some of the different apps and tools he uses to “get my HbA1c down to the best levels it’s ever been.”

Visualizations
2014_music_EB
2014: A Year in New Music by Eric Boam. I had the pleasure of meeting Eric recently in Austin and was blown away by his ongoing music tracking project. I’m excited to see this new report and learn a bit more about what he’s discovered.

AppleWatch_HR_BradLarson
Apple Watch Heart Rate Comparison by Brad Larson. Brad used a simple script to export the heart rate values from his Apple Watch and compare it to two different heart rate measurement devices. Above is a comparison with the Mio Alpha, and he also compared is to a more traditional chest strap and found the readings to be “nearly identical.”

From the Forum

Lady Data
S+ Device
Continuing posts on visualizing my weight workout data

This week on QuantifiedSelf.com

QS Radio: Episode 2
QS15 Conference Preview: Katie McCurdy on Symptom Tracking with Spreadsheets

Posted in What We're Reading | Tagged , , , , , , | Leave a comment

What We Are Reading

WWAR_Header

A short list this week. Enjoy!

Articles

How Networks Bring Down Experts by Max Borders. Max gets double points for this great piece on using networks and peer-to-peer learning for developing personal expertise. Loved the reference to the writing of Michael Polanyi.

Mark Cuban on Blood Testing- Drawing the Wrong Conclusion or a Step in the Right Direction? by Bruce Williams. A nice piece by Dr. Williams about the recent controversy over patient generated blood testing brought on by Mark Cuban.

Show&Tell
MA_FitnessIndex
Defining a New Indicator of Cardiovascular Endurance and Fitness by Marco Altini. Marco has been exploring fitness and heart rate variability detection using iOS applications. Recently he’s been using activity and HRV to examine a new method for determining fitness level. As per usual, Marco wrote an amazing and in-depth report using his own data to showcase what he’s learning from his new application.

Visualizations
QSDietActivity
Quantified Self: A Data Visualization by Joyce Chow, Kinan A, and Adam S. Three students explored data visualization and self-tracking through logging diet and activity.

Access Links

Americans’ Views on Open Government Data
Thank you for sharing

From the Forum

I wrote an open-source app to track everything. It draws nice charts
Continuing posts on visualizing my weight workout data

 

Posted in What We're Reading | Tagged , , , , , | Leave a comment