QS | Public Health Symposium: Margaret McKenna
Ernesto Ramirez
September 2, 2014
This week we’re taking a look back at our 2014 Quantified Self Public Health Symposium and highlighting some of the wonderful talks and presentations. We convened this meeting in order to bring together the research and toolmaker communities. Both of these groups have questions about data, research, and how to translate the vast amount of self-tracking data into something useful and understandable for a wider audience.
As part of our pre-conference work we took some time speak with a few attendees who we thought could offer a unique perspective. One of those attendees was Margaret McKenna. Margaret leads the Data & Analytics team at RunKeeper, one of the largest health and fitness data platforms. In our conversation and in her wonderful talk below Margaret spoke about two important issues we, as a community of users, makers, and researchers, need to think about as we explore personal data for the public good.
The first of these is matching research questions with toolmaker needs and questions. We heard from Margaret and others in the toolmaker community that there is a near constant stream of requests for data from researchers exploring a variety of questions related to health and fitness. However, many of these requests do not match the questions and ideas circulating internally. For instance, she mentioned a request to examine if RunKeeper user data matched with the current physical activity guidelines. However, the breadth and depth of data available to Margaret and her team open up the possibility to re-evaulate the guidelines, perhaps making them more appropriate and personalized based on actual activity patterns.
Additionally, Margaret brought up something that we’ve heard many times in the QS community – the need to understand the context of the data and it’s true representativeness. Yes, there is a great deal of personal data being collected and it may hold some hidden truths and new understanding of the realities of human behavior, but it can only reveal what is available to it. That is, there is a risk of depending too much on data derived from QS tools for “answers” and thus leaving out those who either don’t use self-tracking or don’t have access or means to use them.
Enjoy Margaret’s talk below and keep an eye out for more posts this week from our Quantified Self Public Health Symposium.